CN510: Principles and Methods of Cognitive and Neural
Modeling

Computational Neuroscience
and
Multiple Modeling Scales

Lecture 2

Instructor: Anatoli Gorchetchnikovanatoli@bu.edu>



Creating a Theory or Model

Whatisain mod el 0 ?

Loosely speaking,a model of brain function is simply a
description of how a particular process (for example,
controlof spatialnavigation)worksin the brain

This descriptioncantakemanydifferentforms, for example
I Box diagram
I Verbal description

I Simple mathematical model of a psychophysical
relation

I Complex neural network involving several
mathematical equations
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Many approaches to modeling have been taken

Artificial intelligence (Al). Study of human cognitive abilities
(intelligence) using models that are implemented as computer
programsor hardware In contrastwith neuralmodeling,the term Al
typically implies an approachthat pays little regardto the neural
mechanismsthat implement these abilities in brains ( i tdoopv n 0
approach

Cognitive psychology Study of human cognitive abilities, but rarely
Includingmuchattentionto neuroanatomwr neurophysiology

Cognitive neuroscienceStudiesof humanor animal behavior/cognitive
processewith anemphasi®ontheunderlyingneuralstructures

Computationalneuroscience Study of brain function in terms of the
Informationprocessingropertieof theneuronaktructures

Neuralmodeling,neuralnetworkmodeling The useof neuralnetworksto
model brain areasor cognitive processesA subsetof both cognitive
neurosciencandcomputationaheuroscience
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Summary to this Point

How shouldwe go aboutfiguring out how the humanbrain
works?

I Whattoolsdoweuse t o measure t he
computations?

I Whatexperiments should we run with these tools?
I How should we describe the results?

In 510 we limit ourselvesto descriptionsin termsof neural
models
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Descriptions in Terms of Neural Models

Whatlimitationsit imposeson the datawe canmodel?

I Without neural data these models are hard to verify
even if behavioral output matches the experiment

I Without behavioral output it is hard to verify the
functional usefulness of the circuit even If activities
match the recordings

Thuswe aremostefficient asa combinationof cognitiveand
computationaheurosciencehat relies on both behavioral
andneurophysiologicatlata
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What is Computational Neuroscience?

Churchland Koch, & Sejnowski(1990: two connotationsof
thetermin ¢ o mp u tnaetuiroomsacli enc e o

1. We ought to be able to exploit the conceptualand
technicalresourcef computationakesearchto help
find explanationsof how neural structuresachieve
their effects

2. Theoretical progress ought to be gained through
cooperative projects undertakenby neurobiologists
andcomputerscientists

Computationaheurosciences the study of brain functionin
terms of the information processingpropertiesof the
structureghatmakeup the nervoussystem

It Is aninterdisciplinarysciencethatlinks the diversefields of
neuroscience cognitive science, electrical engineering,
computersciencephysics,andmathematics
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Opposite Strategies For Brain Study

Neurobiologists- Strict bottomup strategyi assumesigher
level strategies cannot be adequately addressed or
understooduntil all the finer grainedpropertiesof neurons
andsynapsesreunderstood

Computerscientists~ Strict top-down strategyi structureof
the nervoussystemis essentiallyirrelevantto determining
the natureof cognition Needonly satisfycomputationabr
psychologicatonstraints

CN 510 Lecture 4



Problems With Bottom-Up Strategy

Knowing all of thefine-graineddetallis impossible
Evenif it waspossible

I Some of it mighhot be necessary, thus a lot of effort
might be wasted

I It still might be not enough: emergambperties i.e.
those that arise only in networks or systemseafrons

An approachwhereyou throw everythingyou know into the
model and hope it will eventually become intelligent
appearsinrealisticon thetime scaleof humanilife
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Marr os Levels of a Com

Computationallevel 7 level of abstractproblem analysis
wherein the task (e.g. determiningstructurefrom visual
motion)is decomposedto its mainconstituents

Algorithm level T level specifying a formal procedureby
which, for agiveninput,the correctoutputwill begiven

Implementation level 1 level defining the physical
Implementatiorof the computations
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Marr os Levels of a Com

Marr believedthat higher levels are largely independenbf
thelowerlevels

Therefore atop-downapproackcanbeusedwherein

I Computational problems can be studied without
analyzingthe algorithmthatexecuteshem,and

I Algorithmic solutionscan be soughtindependentlyof
an understandingof their physical implementationin
thebrain

ANDoctfli nleependenceo
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Wi asE B i a-Cot &= 87

Importantpoint Different architecturesmay be input-output
equivalent, but neverthelessbe radically different in
proceduresndin the speedof arriving at results

Thus we can expandour definition of a computerto all
physicalsystemdhatcando computations

The brain canbe considerech computerthat usesalgorithms
very differentfrom thoseimplementedy serialcomputers

This difference partially led to Ma r r dodrine of
Independence
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Questions Regarding the Doctrine of Independence

As a matterof formal theory, can a given algorithm that is
alreadyknown to performa taskin a given machine(the
brain) be implementedin some other machine with a
differentarchitecturge.g., acomputer)?

Computationah e ur o s canssverves st 0 s

Furthermoresomealgorithmswere shownto work on digital
computersand have implementationsusing neuronlike
elements(e.qg. breadthfirst bidirectional searchhas been
shownto work in the simulationsof brain-like cells)
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Questions Regarding the Doctrine of Independence

As a matter of discovery, can one figure out the problem
analysis (computationallevel) and the algorithm of a
particularbrain functionindependenof the factsaboutthe
Implementation?

Computationah e u r o s canssver Probablyrits

Furthermore,it appearsthat in detailedbiophysical models
same function can be achieved with different
Implementationge.g. overallexcitability of the systemcan
be limited throughreducingexcitability of individual cells,
Introducinga setof inhibitory interneuronsetc)
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Problems With Top-Down Strategy

Spaceof all possiblecomputationabtrategieto solvea given
behavioraltask is too vastto explore without cluesfrom
the neuralimplementation

I Bl ol sduont® a problemis intimately linked to
sensorqualities and the fact that the same organism
mustsolveothertaskswith limitediici r cui t r y o

I Processof evolution further limits the solutions that
biology canuse

I Must i g mto the black b o xt@ have a reasonable
chanceof figuring out the true nature of cognitive
capacities
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Levels Of Organization In Nervous Systems

(il e Faeiriasn:

Somestructurallevelsareshownatright

Could similarly define temporal levels,
ranging from 10 ns (gating of a single
lon channel)to daysor weeks(memory
changese.g. longterm potentiationat a

synapseg

f r anatysidar . O
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Which Levels (Scalesjo Study?

Specifically. to understandhow the braincontrolsbehavior?

Churchlandet al: answemwill slowly emergeasneuroscience
andcomputationatheoriesco-evolve

For now, probablybestto studyall levels

Theyaddacaution

I N | ansensethe postulationof levelsis artificial from
the point of view of the functioningbrain, eventhough
It may be scientifically indispensabléf we areto make
progresso
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Multiscale Modeling

INCF createch Programon MultiscaleModelingin 2009

Multiscale ComputationalModeling permits integration of
neurosciencedata on several scalesto help bridge the
multiple levels of organizationin the description and
understandin@f the nervoussystem

I NineML T a descriptive language for neural modeling
I MUSIC 1 multisimulationcoordinator
I CNOT computational neuroscience ontology
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Multiscale Modeling

MOOSE 1 Multiscale ObjectOriented Simulation
Environment

spans the range from single molecules to subcellular
networks,from single cells to neuronalnetworks,and to
still largersystems

Messaging Object-Oriented Simulation Environment

Extemal
'O
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Churchland et al. Summary

No single neural model can spanall of the levels of study
neededo form athoroughunderstandingf the brain

I 20 years later still holdsue despite recent effort
i Might be generally impossible
It may be necessaryto make assumption®eyondavailable
dataatalevelto reachabetterunderstandingtthatlevel
I It usuallyis necessary, the data is never complete

I These assumptions can be a driving force behind new
experiments

Theoriesshould integratelevel by level to form a coherent
whole

I Attempts are made, but these theories are usually hard
to comprehend
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Churchland et al. Summary

It IS necessaryto abstractlower levels in order to make
comprehensiblenodelsof higherlevels

I That Is obvious, the question is where to draw the line
Finally, all modelsaretemporary!!!

Churchlandetal, p. 54

N... As long asthe modelcapturessomeusefulkernelof truth
that leads to new ways of thinking and productive
experiments,the model will have served its purpose,
suggesting an improved model even as it Is itself
disprovedo
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Churchland et al. Summary

A final commentby theauthors

N... A very elaborateand sophisticatednodel that doesnot
translatewell into an experimentalprogramis a sterile
exercisewvhencomparedo somethingougherthatleadsto
productiveresearcldirectionso

An interpretatiorof this:

A mo d eutility 3s greatlyreducedf it is too complexto be
understoody experimentalists

Or, distilled evenfurther.
Simpler is usually better
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How Do Different Scales Interact?

A fundamentafuestionof neuralmodeling
Shortterm activity of the cells shall be convertedinto long

termchangesn synapticweights

Furthermore,it hasto happenduring the performancenot
duringsomei o-fF f mede

Sidenotes
Sleepconsolidatiortheory,

Dataon replayof experiences

duringsleep

LTM

REAL-TIME

LEARNING INFORMATION

PROCESSING

STM

< L
DYNAMICS DYNAMICS

HOW LINKED ?
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Examples of Neural Models at Various Scales

Compartmentalmodel of a single neuron or severalcells
(well definedpropertiesof eachcell) 1-10cells

Small circuit models(well definedpropertiesof a small well
definedcircuit) ~10-100cells

Models of cells in certain brain areas performing simple
function (someassumedoroperties,connectivity patterns,
etc)~100-1000cells

Models of cells in multiple brain areasperformingelaborate
function (more assumedoroperties,connectivity patterns,
etc)~1000-100000cells

Large scale models, lots of assumptionsand not always
functional,~100000cellsandmore Usuallythelargerit is
thelessfunctionalit is
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Compartmental Model of a Single Neuron

Compartmentalmodels treat a

HolmesandRall in HBT :

singleneuronasa discretesetof
small regions (compartments
thatareelectricallyhomogenous
A small electrical circuit Is
definedfor eachcompartment

Compartments are connected
togetherand simulatedto obtain
complexcell properties

Most well known - De Schutter
andBower (1994

Vea
9syn

iﬁm

Figure 2. Electrical circuit of a dendritic spine. Veq is the synaptic
reversal potential, Vg, is the voltage in the spine head, and ¥, is the
voltage in the dendrite at the base of the spine. R, is the spine head
resistance, R is the spine stem resistance, and Ry, is the branch input
resistance at the base of the spine. g,,, is the synaptic conductance. The
corresponding circuit for an input on a dendrite is shown on the right.
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Compartmental Model of a Single Neuron

M A: membranepotential 1.4 ms after
begin of complex spike

B: membranepotential 4.0 ms after
begin of complex spike

C. membranepotential 10.0 ms after
begin of complex spike (after the
last somatic action potential)

D and E: submembrane C&*
concentrationat sametimes as A

*-} sy . and B respectively

E. De Schutter and J.M. Bower [I'ﬁ"'?-'l;_LJ'ln'E':fn'.lpFrJ.'.'.'i'r.rI. TR - the complexspikein the soma(red)
_ : : anddistal dendrite(green)with the

Quite a few neurosimulation time at which images A-C were
softwarepackagesrebased takenindicatedby white bars Note

onthis approach thenonlinear[Ca?*] scales
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Compartmental Model of a Single Neuron

The classicmodel of single neuronmembranepotentialwas

designedby Hodgkin and Huxley (1952 [next week
lecture]

Thiswasa i p o imodeldi.e.,, neurontreatedas having no
spatialextent)ratherthana compartmentamodel

Compartmentamodelis anextensionf HodgkinandHuxley

model where multiple point modelsof compartmentsare
linked togethetto form a neuron[following lecture]

As Jim Bower said, they were incrementally adding
compartmentand currentsuntil the model cell properties
matchedhoseexperimentallyrecorded

Note they were looking to match cell properties,not any
networklevel behavior
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Compartmental Model of a Single Neuron

This scaleof modelingis bestsuitedfor simulationsof single
cell recordings

With enoughdatayou can

I model the distribution of channels along tendritic
tree,

I look at spatial distribution of potential and
concentrations of different ions

I study interactions between different inputs to the cell

The main goal is usually to find the importantcell features
and basedon themto build a reducedmodel that can be
usedin networksimulations
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Features of Small Circuit Models

All neurongan circuit areknown, including manyof the more
complex propertiesof individual neuronsand associated
synapses

Somestudiesuseonly a subsetof themfor mathematicabr
conceptuatractability

Neuronandsynapseropertiesarerepresenteth muchmore
detailthanin mostneuralnetworks,thoughnot asdetailed
ascompartmentamnodels

In some cases, sophisticated mathematical analyses are

carriedout, including proofsof stableoscillations,etc, for
certainparameteregimes

Other studies often just simulate networks rather than

carrying out the very complex and often essentially
Impossiblemathematicaanalyses
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Small Circuit Models

Herethefunctionof thecircuit takesprecedenceverdetailed
cell descriptions

Often thesemodelsare built on the datafrom invertebrates,
sincethey usually havefewer cells subservingobservable
functions

Tritonia circuit switching from withdrawal (B) to swim
patternoscillation(C) dependingon modulationof C2

REFLEXIVE PATTERN
A ANATOMICAL NETWORK B WITHDRAWAL GENERATOR
MODE MODE

B2 @O
@’@

From Dickinson in HBT, p. 632

CN 510 Lecture 2 29




Small Circuit Models

Rely on bothsinglecell recordingsandmulticell recordings

Slice recordingsare lessvaluablehereas we are concerned
with functionality,andthatneedsalive behavinganimal

We can still model precise effects on the level of ionic
channelsaandconcentrations

The main goal of small circuit modeling of vertebrategs a
detailedstudyof networkproperties

Samecircuits repeatin different areasof the brain, quickly
checkingthe existingmodelagainsthe datafrom newarea
and tweaking it is much simpler then designinga new
model

Watchout, sometimeshesetweaksaretotally unrealisti@
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Small Circuit Models

Several models that we will cover in detail can also be
classifiedas small circuit despitelack of attentionto cell
details

FeedforwardShunting Network T modelsthe adaptationin
retinal cells, shows correlationswith neurophysiological
datadespiteoverly simplisticcell descriptions

RecurrentCompetitive Field T modelsthe competitionthat
can take place in various brain areasand subservethe
subsequenearningof correctcategories

SeltOrganizingMap T modelslearning of topographically
representedtimuli in sensorycortices

Having enoughof small circuits handy helps to construct

biggermodels
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Models of Few Small Areas of the Brain

So far we looked at cell activities and interactionsbetween
cells

Here the interactionsbetweenpopulationsof cells become
moreimportant

Probablythe mostrepresentedategoryof neuralmodels

We will look atvon der Malsburgmodelof orientedreceptive
fleld formation, basic ART model, and the BEATS that
decodespatialor temporalintervals

Multicell recordingsfrom awake behavinganimals are the
mainsourceof datafor thesemodels

Both spatialandtemporalcomponent®f the interactionsare
Important
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Place and GridCells

Placecells O 0 K e amdDestrowsky (1971) ; { s

I Firing of a cell isrestricted to an area space Whlle the
animal navigates through the environment

I Found in hippocampal areas CA1, CA3 and dergwtes
(DG) (T

Grid cells Hafting etal., (2009 W &

PR I8 ;
Firing of a cell is restrictedto multiple areasof spacewhile the
animalnavigateghroughthe environment

Theseareasrepeatin hexagonalgrid patternwith small (30-
80cm) periods

Foundin all layersof entorhinalcortex(EC)
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Grid -to-Place Decoding And Learning

Entorhinal Cortex Dentate Gyrus
Lot ne O Granule cells ; Interneuron
ventral _/\ /\\ /\ /\ © 7
NG NGRS AN
O RS
O e Creiac
—@—@
T=44cm :
P 0 7
AN AR N S ) 2
AN A A AN @ Al
dorsal O A
\ / : O i L)
i

Five EC cellsperspatialscale
DG cellscombinetwo entorhinalspatialscales
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Grid -to-Place Decoding And Learning

Entorhinal Cortex Dentate Gyrus
N D O Granule cells ; Interneuron
ventral _/\ /\ /\ /\ O 3
NGt BN AN T O ()
8 7 DA
T=44cm : e _: O
O o
P N T AR o N N S ) 30
G A A @ S c
dorsal | 8 ~-

current
location

DG signalwill still be periodic, but the periodwill be muchlargerthangrid
cell periods(572m for two scalesin the figure), the more scalesthe model

combinesthelargerrepresentatiort canbuild
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Features of Small Areas Models

A lot of simplepropertieof neuronan theinvolvedareasare
known,includingfiring rates responseropertiesandlocal
connectivity

Studiescanonly usea subsebf themthatarehypothesizedo
beimportantfor the functionality

Neuronal and synaptic propertiesare representedn more
details than in artificial neural networks, though not as
detailedascompartmentabr smallcircuit models

Studiesare carriedby numericalsimulationsas mathematical
analysigs intractable

Resultsare comparedto neurophysiologicabnd sometimes
behavioradata
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Models of Cells in Multiple Brain Areas
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Modular Neural Exploring and Traveling Agent

MoONETA as many other mediumto large scale modelsis
meantto capturesomeof the grosscapabilitiesof the brain
functionscontrollingbehavior

Eachblock in diagramcorrespondgo a field of cells, but
thesedo not alwayscorrespondo specificbrainareas

Propertieof modelcellsaresimplified

Some,but not all, model cell typeshave beencompareadto
cellsexistingin vivo (e.g. hippocampusyisual cortex)
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Modular Neural Exploring and Traveling Agent
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Cell recordingscombineadwith behavioradata
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Modular Neural Exploring and Traveling Agent

Main goalis to matchthefunctionandthe mechanism
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