
CN510: Principles and Methods of Cognitive and Neural 

Modeling 

Instructor: Anatoli Gorchetchnikov <anatoli@bu.edu> 

Recurrent Competitive Fields  

Lecture 9 



Shunting Competitive Networks 

Properties of feedforward case  

– saturation avoidance  

– noise suppression (uniform inputs)  

– factorization of pattern and energy  

– automatic gain control  

– tendency toward total activity conservation 

(normalization)  

– shift property in log coordinates  

– Weber’s law  
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Recurrent Competitive Fields 

Recurrent simply refers to the inclusion of feedback pathways 

that allow a cell’s output to project back to it’s input either 

directly or indirectly 

Competitive refers to the fact that there are inhibitory 

interactions between cells in the network  

– On-center, off-surround describes the nature of these 

inhibitory interactions 

Field refers simply to a group of interconnected neurons  

– The term network could also be used 
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Recurrent Competitive Fields 

Furthermore, we will primarily be interested in shunting 

RCFs 

 

Alternative names for the networks we’ll look at include:  

– recurrent on-center, off-surround shunting competitive 

network 

– shunting competitive network with feedback 

– etc 
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Deriving a Shunting RCF 

Start with feedforward network: 

 

 

 

What happens if we allow for inputs from other cells (i.e., 

recurrent connections)? 

Furthermore, what if the on-center, off­surround nature of the 

network was built into these feedback connections rather 

than the inputs to the cells? 
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Deriving a Shunting RCF 

 

 

 

Replace inhibitory external inputs with 

recurrent inhibition 

Add recurrent excitation 

 

 
 

All recurrent inputs go through a signal 

function f(x) 

In this case it can also be called a feedback 

function 
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Recurrent Competitive Field 

 

 
 

Recurrency can allow the activity to reverberate 

The system can be used as a persistent short term memory 

But only if it maintains the initially imprinted pattern without 

distortions 
 

– Will this pattern be maintained?  

– Will it distort?  

– If so how will it distort? 
 

It all depends on the shape of the signal function f(x) 
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Method 

 

 

Assume an initial pattern has been impressed on the field and 

the inputs have been turned off 

Then the equation reduces to 

 

 

We want to see what happens over time to the pattern stored 

in memory and to the total activity in the network 

 

We will try to get an intuitive feel for what is happening 

rather than doing hard-core mathematical analyses 
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Possibilities 

Let’s say a pattern is 

provided to the network 

After the input is turned off 

what would be the activity 

the network will settle to? 

– Perfect storage 

– Degradation 

– Only the strongest 

persists 

– Strong signals persist 

– All signals saturate at 

some value 
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Look at f(x) and g(x)=f(x)/x 

 

Linear 

 

 

Slower than linear 

 

 

Faster than linear 
 

 

Sigmoidal 
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Total Energy Equation 

 

Sum up for all xi 
 

 

 

Recombine the terms 

 
Join terms with the sum of f(x) 

 
 

Pull the sum out 
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Total Energy Equation 

For each signal function we would like to know what would 

happen to the total energy in the system 

 

Given non-negative signal functions the equation 

 

 

ensures that the total energy of the system will stay bounded 

between 0 and B 

 

In order to analyze what value it will converge to it is useful 

to rewrite the equation 
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Total Energy Equation 

 

 

Pulling x(B-x) out 

 

 

 

 
And substituting  
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Total Energy Equation 

 

 

 

Now using our usual pattern variable 

 

 

 

 

 

And finally assigning  
 

                                   we end up with  
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has the following critical points: 

 

x=0, and a set of points                       or   

 

The case x=B turns the denominator of             to 0, so it is 

not a valid critical point 

 

Furthermore, when 0<x<B, the sign of the derivative is the 

same as the sign of   
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We will be looking at the relationship between              and 

 

 

Since  the range of G is the  

same as the range of g(xi) 

 

Simplifying approximation: 

Assume that the shape of G 

is the same as the shape of g(x) 
 

Basically replacing a sum of functions with a function of a 

sum 
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This approximation is not valid for quantitative analysis 

For one strong xi 

 
 

 

For uniform xi’s 

 

 

 

However, in both cases the shape of G is the same as the 

shape of g() 
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Pattern Variables Equation 

Using derivative formula 

 

 

 

And substituting 
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Pattern Variables Equation 

 

 

 

 

 
 

Since the pattern variables are normalized 
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Linear Signal Function 

 

 

 
 

Firing rate directly proportional to activation 

 

 

 

Here the derivative is 0 

 

 

Thus the pattern does not change 
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Linear Signal Function 

Let’s compute the value of G 

 

 

 

 

 

 

And compare                    and 
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Linear Signal Function 

Case 1: 

Single intersection if G = C > A/B 

 

 

 

On the left 
 

is positive, so x increases  

On the right 
 

is negative, so x decreases  

 

The resulting critical point                     is stable 
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Linear Signal Function 

Thus no matter what the initial (non-zero) energy is it will 

settle to a fixed value:  

– total activity normalization  

– amplification of the weak patterns  

– reduction of energy for the strong patterns 

 

Thus this case is a perfect pattern preservation with a stable 

energy level – ideal working memory 

 

Unfortunately, linear signal function is not exactly realistic 
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Linear Signal Function 

Case 2: 

 

If C ≤ A/B there is no intersection 

 

The derivative is always  

negative 

The system converges to 0: 

pattern degradation 
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Linear Signal Function 

Summary: 

 

 

 

Pattern storage depends on parameter choices: 

If C ≤  A/B all xi go to 0; no storage 

If C > A/B – perfect storage of the pattern with total energy 

converging to 
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Slower-than-Linear Signal Function 

 

 

 

Firing rate tend to increase slower than activation, Type I 

excitability 

 

 
 

Here 
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Slower-than-Linear Signal Function 

 

 

 

 

 

 

Here if                the sum component is positive, since for the 

Xi that are small the derivative has most of               positive 

and Xi will grow 

For the Xi that are large the derivative has most of               . 

negative and Xi will decrease 

This will lead to uniformization of the pattern 
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Slower-than-Linear Signal Function 

Let’s compute the value of G 

 

 

 

 

 

 

And compare                    and 

 

Note that if x=0 then  
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Slower-than-Linear Signal Function 

Case 1: 

Single intersection if G0 = C/D > A/B 

 

 

 

On the left 
 

is positive, so x increases  

On the right 
 

is negative, so x decreases  

 

The resulting critical point is stable 
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Slower-than-Linear Signal Function 

Case 2: 

 

If C/D ≤ A/B there is no intersection 

 

The derivative is always  

negative 

The system converges to 0: 

pattern degradation 
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Slower-than-Linear Signal Function 

Summary: 

 

 

 

Pattern storage depends on parameter choices: 

If C/D ≤  A/B all xi go to 0; no storage 

If C/D > A/B – then total energy is converging to a stable 

point, but the pattern is uniformized in the process 

 

Note that although it is the case for Type I excitability to have 

slower than linear signal function, here f(x) lumps together 

synaptic integration and signal function 
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Faster-than-Linear Signal Function 

 

 

 

Firing rate tend to increase faster than activation, not too 

realistic, but again synaptic integration can kick in… 

 

 
 

Here 
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Faster-than-Linear Signal Function 

 

 

 

Here if                 the sum component is negative, since for the 

Xi that are small the derivative has most of               negative 

and Xi will decrease 

For the Xi that are large the derivative has most of           . 

positive and Xi will grow 

This will lead to contrast enhancement of the pattern and 

eventually to a winner-take-all situation 
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Faster-than-Linear Signal Function 

Let’s compute the value of G 

 

 

 

 

 

 

And compare                    and 

 

Note that if x=0 then  

 

 

CN 510 Lecture 9 

1 1

2 2

1 1

1
( ) ( )

1

n n

i i i

i i

n n

i i

i i

G X g x f x
x

C
Cx x

x x

 

 

  

 

 

 

A

B x
G

0G 



Faster-than-Linear Signal Function 

Case 1: 

Two intersections if G is high enough 

 

On the left and right  
 

is negative, so x decreases  

In the middle 
 

is positive, so x increases  

 
The resulting critical point 

on the right is stable, on the left is unstable 
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Faster-than-Linear Signal Function 

Case 2: 

One intersection if G is just touching  

 

On the left and right  
 

is negative, so x decreases  

 
The resulting critical point 

is a saddle, depending on the  

initial condition the system  

can converge to this point or to 0 
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Faster-than-Linear Signal Function 

Case 3: 

No intersections if G is under 

 

Here  
 

is always negative, so x  

decreases  

 
Energy in this system will 

decay to 0 no matter the initial conditions 
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Faster-than-Linear Signal Function 

Summary: 

 

 

 

Pattern storage depends on parameter choices: 

If C is not large enough, then all xi go to 0; no storage 

If C is large enough – then small initial patterns will decay to 

0, while for large energy patterns the total energy will 

converge to a stable point, but the pattern will be 

transformed to a winner-take-all activation 
 

This is a useful behavior for categorization tasks, but not very 

realistic of a signal function 
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Sigmoidal Signal Function 

              faster-than-linear     linear     slower-than-linear 

Grossberg suggested that this function combines all three 

previous cases: 

– Contrast-enhancing small signals 

– Stores intermediate signals with little distortion 

– Uniformizes large signals 

Unfortunately, this requires a true linear segment in the middle 
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Quenching Threshold 

Contrast-enhancement of small signal basically selects the 

strongest of small input components, amplifies them and 

suppresses the weaker components 

As the stronger components overgrow the faster-than-linear 

segment they survive, while the weaker components get 

quenched to 0 

The quenching threshold is a measure of how large the input 

component has to be in order to survive the faster-than-

linear part 

The exact value of the threshold depends on the parameters of 

a sigmoid as well as the input distribution 

In the real sigmoid it is the inflexion point that the signal has 

to cross 
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Quenching Threshold 

Since the closer the signals to the linear part or inflexion 

point, the better chance of survival they have, one way to 

ensure they persist is to add a non-specific activation 

(arousal or modulation) that will bump up the values of all 

inputs 

Trough the manipulation of modulation level one can control 

the noise-suppression properties of a sigmoid 
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Sigmoidal Signal Function 

 

 

 

Firing rate tend to increase faster than activation for low 

activations, saturating for high activations  

 

 
 

Here 
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Sigmoidal Signal Function 

Case 1: 

Two intersections if G is high enough 

 

 

 

In the middle 
 

is positive, so x increases  

On the left and rignt right 
 

                    is negative, so x decreases  

 

The resulting critical point on the right is stable, the one on 

the left is unstable 
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Sigmoidal Signal Function 

Cases 2 (single point intersection) and 3 (no intersection) are 

also similar to respective faster-than-linear cases   

Summary: 

 

 

 

Pattern storage depends on parameter choices: 

For certain parameter choices all xi go to 0; no storage 

For better choices small initial patterns will decay to 0, while 

for large energy patterns the total energy will converge to a 

stable point, but the pattern will be deformed with large 

activities saturated and small activities going to 0 
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General RCF Summary 
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More on RCF 

The most interesting cases can arise when recurrent inhibition 

is distance dependent 

In real spiking neurons the signal function is more complex 

than any of the four studied here 

If you want to use RCF properties with spiking neurons you 

should study the signal function of your neurons  

Another aspect to consider is temporal dynamics: 

– True sigmoid will eventually uniformize part the 

pattern and kill the rest 

– In the spiking case the stronger inputs have an 

advantage of spiking faster, thus preventing other 

components from spiking at all, few winners take all 

situation… 
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Next Time 

Synaptic dynamics as a biophysical basis of long term 

memory changes 

 

Readings: Shepherd, G.M. (2004). Synaptic Organization of 

the Brain. New York, NY. Oxford University Press. 

Chapter 2. 

 


