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4.3.263 Neural Networks: Biological Models and Applications

Beginning with the seminal work of McCulloch and Pitts in the 1940’s, artificial
neural network (or connectionist) modeling has involved the pursuit of
increasingly accurate characterizations of the electrophysiological properties of
individual neurons and networks of interconnected neurons. This line of research
has branched into descriptions of the nervous system at many different grains of
analysis, including complex computer models of the properties of individual
neurons, models of simple invertebrate nervous systems involving a small number
of neurons, and more abstract treatments of networks involving thousands or
millions of neurons in the nervous systems of humans and other vertcbrates. At
various points in the history of neural network research, successful models have
moved beyond the domain of biological modeling into a variety of engineering and
medical applications.



Modeling the Computational
Properties of Neurons

Although the idea that the brain is the
secat of the mind and controller of
behavior is many centuries old, research
into the computational properties of
interconnected neurons was largely
absent until the 1940°s. McCulloch and
Pitts (1943) initiated the field of neural
network research by investigating
networks of interconnected neurons,
with each neuron treated as a simple
binary logic computing element. In this
model, the axon of a neuron carries the
cell’s binary output signal. This axon
forms a set of synaptic connections to
the dendrites, or inputs, of other
neurons. The axonal signal corresponds
roughly to the voltage level, or
membrane potential, of the neuron. The
total input to a neuron is the sum of its
synaptic inputs, and if this sum exceeds
a certain threshold, the McCulloch-Pitts
neuron produces an output of 1.
Otherwise the cell’s output is 0. This
binary conception of a neuron’s output
was based on observations of “all or
nothing” spikes, or action potentials, in
the membrane potentials of biological
neurons.

The McCulloch-Pitts model of the
neuron was formulated when our
physiological understanding of neurons
was rather limited. Although simple
binary neurons are still used in some
neural network models, many later
models treat a neuron’s output as a
continuous, rather than binary, function
of the cell’s inputs. This change was
motivated by  neurophysiological
observations that the frequency of
neuron spiking, rather than the presence
or absence of an individual spike, is the
more relevant quantity for measuring the

strength of signaling between neurons.
Perhaps the most widely used
formulation of a neuron’s output in
current neural networks is the following

equation:
y=fQ yzi~6)

where y; is the output (spiking rate) of a
neuron labeled j, z; is the strength of the
connection (synapse) from neuron i to
neuron j, & is the firing threshold for
neuron j, and the output function f(x) is
typically an increasing function of x,
with f(x)=0 for x<0. In words, if a
neuron’s total input (Z yizij ) is below

the firing threshold, then the neuron’s
output is zero, and if the input exceeds
the firing threshold, then the output is a
positive value related to the difference
between the total input and the
threshold. Different models use
different forms of f{x), with common
choices including threshold linear and

sigmoidal output functions.

A significantly more sophisticated
account of neuron dynamics was
formulated by Hodgkin and Huxley
(1952), who won the Nobel prize for
their experimental and modeling work
elucidating the relationship between the
ionic currents flowing in and out of a
neuron and the membrane potential of
the neuron. The behavior of networks
of Hodgkin-Huxley-like neurons, or
shunting _neural networks, has been
studied in some detail (e.g., Grossberg
1980), and these networks have formed
the basis of a number of models of
biological nervous systems.

The models described above are point
models of a neuron in that they treat the
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electrical properties of the neuron as
uniform across the neuron’s membrane;
in other words, they treat neurons as if
they did not have a spatial extent.
However, the membrane potential of a
real neuron varies as a function of
position on the membrane. For
example, the membrane potential at a
distal dendrite of a neuron can differ
substantially from the membrane
potential at the cell body or along the
axon.  Sophisticated compartmental
models of neurons, which treat the
neuron as a collection of interconnected
electrical sub-circuits (compartments),
have been developed in recent years.
Each sub-circuit in a compartmental
model corresponds to a different portion
of a real necuron, such as a single
dendrite, and large-scale computer
simulations are used to simulate the
membrane potential of a single neuron.
Although  compartmental = models
provide a more accurate description of
single neuron dynamics than the point
models used in most neural networks,
the complexity of this type of model has
prevented its use in networks containing
more than a handful of neurons. (See
Arbib 1995 for more information on
single neuron models and neuron
simulators.)

Learning in Neural Networks

The connections between cells in an
artificial neural network correspond to
synapses in the nervous system. In the
earliest neural network models, the
strengths of these connections, which
determine how much the pre-synaptic
cells can influence the activity of the
post-synaptic cells, were kept constant.
However, much of the utility of neural
networks comes from the fact that they
are capable of modifying their

computational properties by changing
the strengths of synapses between cells,
thus allowing the network to adapt to
environmental conditions (for biological
neural networks) or to the demands of a
particular engineering application (for
artificial neural networks). A major
challenge for computational
neuroscientists has been to develop
useful algorithms for changing the
weights in a neural network in order to
improve its performance based on a set
of training samples.

Training a neural network typically
consists of the presentation of a set of
input patterns alone, or the presentation
of input/output pattern pairs, to the
network. During the presentation of
each pattern or input/output pair, the
weights of the synapses in the network
are modified according to an equation
that is often referred to as a learning
law. In a supervised learning network,
training  comsists of  repeated
presentation to the network of
input/output pairs that represent the
desired behavior of the network. The
difference between the network’s output
and the training output represents the
performance error and is used to
determine how the weights will be
modified. In a self-organizing network,
the weights are changed based on a set
of input patterns alone, and the network
typically learns to represent certain
aspects of the statistical distribution of
the training inputs. For example, a self-
organizing network trained with an input
data set that includes three natural
clusters of data points might learn to
identify the data points as members of
three distinct categories.

A variety of learning laws have been
developed for both supervised and self-
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organizing neural networks. Most of
these learning laws fall into one of two
classes. The origins of the first class,
associative or Hebbian_learning laws,
can be traced to a simple conjecture
penned by the cognitive psychologist
Donald Hebb (1949): “When an axon of
cell A is near enough to excite a cell B
and repeatedly or persistently takes part
in firing it, some growth process or
metabolic change takes place in one or
both cells such that A’s efficiency, as
one of the cells firing B, is increased.”
With this statement, Hebb gave birth to
the concept of Hebbian learning, in
which the strength of a synapse is
increased if both the pre- and post-
synaptic cells are active at the same
time. Remarkably, Hebb’s conjecture,
which was made before the development
of experimental techniques for
collecting  neurophysiological data
concerning synaptic changes, has proven
to capture one of the most commonly
observed aspects of synaptic change in
biological nervous systems, and
variations of the Hebbian leaming law
are used in many current neural network
models. It should be noted, however,
that these learning laws are considerably
simplified approximations to the
complex and varied properties of real
synapses (e.g., sec Regulation of
Synaptic Efficacy; Long-term
Potentiation; Long-term Depression).

In a neural network using Hebbian
learning, a synapse’s strength depends
only on the pre- and post-synaptic cell
activations, rather than on a measure of
the network’s performance error.
Hebbian learning laws are thus well-
suited for self-organizing neural
networks (e.g., see Artificial Neural
Nerworks: Associative and  Self-

organizing).

A second common class of neural
network  leaming  laws, error
minimization  learning laws, are
commonly employed in supervised
learning situations where an error signal
can be computed by comparing the
network’s output to a desired output.
Whereas Hebbian leamning laws arose
from psychological and
neurophysiological  analyses, error
minimization learning laws arose from
mathematical analyses aimed at
minimizing the network’s performance
error, usually through a technique
known as gradient descent. The
network’s performance error can be
represented as a surface in the space of
the synaptic weights. Valleys on this
error surface cotrespond to synaptic
weight choices that lead to low error
values. Ideally, one would choose the
synaptic weights that correspond to the
global minimum of the error surface.
However, the entire error surface cannot
be “seen” by the network during a
training trial; only the local topography
of the error surface is known. Gradient
descent learmming laws change the
synaptic weights so as to move down the
steepest part of the local error gradient.

One of the first gradient descent
learning laws was developed by Widrow
and Hoff (1960) for a simple one-layer
neural network, the ADALINE model,
which has found considerable success in
technological applications such as
adaptive noise suppression in computer
modems. However, one-layer networks
have limited computational capabilities.
Gradient descent learning has since been
generalized to networks with three or
more layers of neurons, as in the

commonly employed backpropagation
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learning algorithm first derived by Paul
Werbos in his 1974 Harvard Ph.D.
dissertation and later independently
rediscovered and popularized by
Rumelhart et al. (1986).

Common Neural Network
Architectures

The cells in a neyral network can be
connected to each other in a number of
different ways. A feedforward network
is one in which the output of a cell does
not affect the cell’s input in any way.
Probably the most common artificial
neural network architecture is the three-
layer feedforward network, first
described by Rosenblatt (1958). In this
architecture, an input pattem is
represented by cells in the first layer.
These cells project through modifiable
synapses to the second layer, which is
often referred to as the hidden layer
since it is not directly connected to the
input or output of the network. The
hidden layer cells in turn project through
modifiable synapses to the output layer.
The backpropagation learning algorithm
is a common choice for supervised
learning in three-layer feedforward
networks.

Recurrent or feedback networks can
exhibit much more complex behavior
than feedforward networks, including
sustained oscillations or chaotic cycles
of cell activities over time. In their most
general form, the cell outputs of one
layer in a recurrent network not only
project to cells in the next layer, but they
can also project to cells in the same
layer or previous layers. Variants of the
backpropagation algorithm have been
developed for training multi-layer
recurrent networks.

One important and heavily studied

recurrent network architecture is the
self-organizing _map, which was first
formulated to account for
neurophysiological observations
concerning cell properties in primary
visual cortex (von der Malsburg, 1973;
see also Artificial Neural Networks:
Associative  and  Self-organizing;
Topographic Maps in the Brain). The
basic principle of a self-organizing map
is as follows. Cells in the input layer,
sometimes referred to as a sub-cortical
layer, project in a feedforward fashion to
the cells in the second, or cortical, layer,
through pathways that have modifiable
synapses. Cells in the cortical layer are
recurrently interconnected, and they
compete with each other through
inhibitory connections so that only a
small number of the cortical layer cells
are active at the same time. These
“competition winners” are typically the
cells that have the most total input
projecting to them from the sub-cortical
layer, or the cells that lie near cells with
a large amount of input. The
connections between the sub-cortical
cells and the active cortical cells are
then modified via an associative
learning law so that these cells are even
more likely to become active the next
time the same input pattern is applied at
the sub-cortical layer. The net effect
over many training samples is that cells
that are near to each other in the cortical
layer respond to similar input patterns (a
property referred to as topographic
organization), and more cortical cells
respond to input patterns that are
frequently applied to the network during
training than to rarely encountered input
patterns. Although  originally
formulated as recurrent networks in
which the cells in the cortical layer
project to each other in a recurrent
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fashion, simplified feedforward versions
of the self-organizing map architecture
that approximate stable behavior of the
recurrent system have been developed
and thoroughly studied (c.g., Kohonen,
1984).

A related neural network architecture
that has also been used to explain a
number of neurophysiological
observations is the adaptive resonance
theory (ART) architecture (Grossberg,
1980). In this network, an additional set
of recurrent connections project from
the cortical layer back down to the sub-
cortical layer. The top-down projections
emanating from a cortical cell embody
the sub-cortical pattern that the network
has learned to expect when that cortical
cell is activated. These learned
expectations can be used to correct
coding errors before learning has taken
place in the bottom-up pathways,
thereby providing a more stable cortical
representation. In addition to their use in
biological modeling, neural network
systems based on the ART model have
been applied to a number of pattern
recognition problem domains (Carpenter
and Grossberg, 1991).

Specialized Neural Models of
Biological Systems

The neural networks described so far are
“general-purpose” models in that the
same architecture is used to attack a
varicty of biological modeling or
engineering problems. In addition to
these models, many specialized models
of particular neural circuits have been
proposed. Among the carliest were
models of cerebellum  function,
proposed by researchers such as Marr
and Albus beginning in the late 1960’s.
The cerebellum has a very regular and

well-characterized anatomical structure,
and cerebellar physiology has been
heavily studied in recent decades (e.g.,
see Cerebellum; Long Term Depression
(Cerebellum)).  Different cells and
synapses in the cerebellum have
different properties, and neural models
of the cerebellum typically incorporate
these differences. Relatively primitive
invertebrate neural circuits, such as
heartbeat oscillators, have also been the
focus of numerous biologically
specialized neural network models, as
have vertebrate circuits such as the
superior colliculus, hippocampus, basal
ganglia, and various regions of cortex.

Another type of specialized biological
model approximates the function of
entirc behavioral systems involving
large-scale networks of the human brain.
Individual cells in these models often
correspond to relatively large brain
regions, rather than to single neurons or
distinct populations of neurons. These
models often combine aspects of
different neural network architectures or
learning laws. The DIVA model of
speech production (Guenther 1995), for
example, combines several aspects of
carlier neural network models into an
architecture that learns to control
movements of a computer-simulated
vocal tract. The model has been shown
to provide a unified account for a wide
range of experimental observations
concerning human speech that were
previously studied independently. Other
models of this type address various
aspects of human cognition, movement
control, vision, audition, language, and
memory.

Pattern Recognition Applications
Neural networks are capable of learning
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complicated non-linear relationships
from sets of training examples. This
property makes them well suited to
pattern recognition problems involving
the detection of complicated trends in
high-dimensional data sets. One such
problem domain is the detection of
medical abnormalities from
physiological measures. Neural
networks have been applied to problems
such as the detection of cardiac
abnormalities from electrocardiograms
and breast cancer from mammograms,
and some neural network diagnostic
systems have proven capable of
exceeding the diagnostic abilities of
expert physicians. Supervised learning
networks have been applied to a number
of other pattern recognition problems,
including visual object recognition,
speech recognition, handwritten
character recognition, stock market
trend detection, and scent detection
(e.g., Carpenter and Grossberg, 1991).

For further reading on neural networks
and their biological bases, see Anderson
and Rosenfeld (1988), Arbib (1995), and
Kandel et al. (2000).
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