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Abstract

The GENESIS (GEneral NEural SImulation System, http://genesis-sim.org/) simula-
tion platform was one of the first broad-scale modeling systems in computational bi-
ology to encourage modelers to develop and share model features and components.
Supported by a large developer community the GENESIS simulator participated in
innovative simulator technologies such as benchmarking [Bhalla et al., 1992|, paralleliza-
tion [Goddard and Hood, 1998] and declarative model specification [Goddard et al., 2001]
and it was the first neural simulator to define binding for the Python scripting lan-
guage [Vanier, 1997].

An important feature of the latest version of GENESIS, GENESIS 3.0 (G-3), is that it
decomposes into self-contained software components, that conform to the CBI simulator
architecture [Cornelis et al., 2008|. This federated architecture allows separate scripting
bindings to be defined for the mathematical solvers and the GUI, as well as for other
necessary simulator components.

Python and Perl are scripting languages that provide rich sets of freely available
open source libraries [Langtangen, 2004, Valiente, 2009]. With a clean dynamic object-
oriented design producing highly readable code, Python and Perl are widely employed in
specialized areas of software component integration [Thiruvathukal et al., 2001, Lee and Ware, 2007
SWIG (Simplified Wrapper and Interface Generator [08:, 2008|) examines an application
programming interface (API) and makes it available to a scripting language of choice.
This way the software components of the G-3 simulator can be glued together, instan-
tiated and connected to external libraries and applications from user-defined scripts in
either Python or Perl.

We illustrate this approach with examples using Python scripting. The first example
uses a mathematical solver as a stand-alone software component driven from a Python
script that generates and runs a simple single compartment model neuron. This script is
then contrasted with C code and GENESIS 2 (G-2) implementations that connect to the
same mathematical solver. The second example interfaces the mathematical solver to a
modeling environment for the exploration of a neuron morphology from an interactive
command-line and a graphical shell. The third example applies scripting bindings to
connect the G-3 simulator to external graphical libraries and an open source 3D content
creation suite. This allows us to visualize 3D models based on electron microscopy and
convert them to computational models [Cornelis et al., 2007|.

Employed this way the stand-alone software components of the G-3 simulator provide
a framework for progressive federated development in the computational neurosciences.

1 Introduction

GENESIS is a general purpose simulation platform that was originally developed to
support the simulation of neural systems ranging from subcellular components and
biochemical reactions to complex models of single neurons, simulations of large net-
works, and systems-level models. The software development of the GENESIS sim-



ulator was initiated during the 1980’s through research projects that addressed spe-
cific scientific questions in computational neuroscience and was then logically contin-
ued with a life cycle of research project extensions. For example the libraries for
kinetic pathway modeling were added for projects investigating how signalling net-
works store learned behaviour [Bhalla and Iyengar, 1999] and how light regulates re-
lease from intracellular calcium stores for photoreception [Blackwell, 2000]. The fast
implicit solver was developed with the specific focus of complex Purkinje cell model-
ing |De Schutter and Bower, 1994a, De Schutter and Bower, 1994b| and more recently
synaptic learning rules have been implemented |Giinay et al., 2008]. In principle such
linear or single-threaded development processes can continue forever. However, repet-
itive extension of the GENESIS simulator with source code of diverse functions and
origin ultimately made the code structure so complicated that it became increasingly
difficult, if not impossible, to extend. Because of the density of the GENESIS 2 (G-2)
source code the application became ‘monolithic’ while user contributions to simulation
functionality were marginalized. Ultimately, releases and updates became less frequent
and the software life cycle moved from extension to maintenance.

GENESIS 3 (G-3) is a major revision and update of the GENESIS simulation system.
The core simulator functionality has been restructured, with a more modern modular
design (the CBI federated software architecture, described below). This not only results
in improved simulator performance and portability, but also allows the use of new script
parsers and user interfaces, as well as the ability to communicate with other modeling
programs and environments. The CBI federated software architecture is specifically
designed to support the integration of stand-alone software components and applications
by using common integration technologies such as modern scripting languages.

2 Methods & Software

Starting from the existing source code base, and taking lessons from the past, G-3 is a
modularization of the core functions of the G-2 simulator. The guiding principle for the
definition of the core functions of the G-3 simulator is what is referred to as the CBI
federated software architecture, a modular abstracted architecture that layers the data
in a simulator and separates the data representations from the algorithms to process
them. This is described in more detail in the next sections.

2.1 GENESIS 2

GENESIS is a general purpose simulation platform that was developed to support the
simulation of neural systems ranging from subcellular components and biochemical re-
actions to complex models of single neurons, simulations of large networks, and systems-
level models. It was the first broad scale modeling system in computational biology to
encourage modelers to develop and share model features and components. For these
people, it was the object-oriented approach taken by the simulator along with its high-



level simulation language that allowed the exchange, modification, and reuse of models
or model components.

GENESIS simulations are constructed from model components that receive inputs,
perform calculations on them, and then generate outputs. Model neurons are con-
structed from basic parts, such as compartments, and variable conductance ion chan-
nels. Channels are linked to their compartments which are then linked together to form
multi-compartmental neurons of any desired level of complexity. Neurons may be con-
nected together to form neural circuits. It is the paradigm used by the GENESIS 2 script
language interpreter (SLI), the commands which it recognizes, and the main GENESIS
‘objects’ available for constructing simulations that have most powerfully assisted in the
sharing of model features amongst the broader modeling community.

A high-level simulation language, the GENESIS SLI!, provided a framework within
which a modeler could easily extend the capabilities of the simulator and manipulate
models or model components by exchange, modification, and reuse. The SLI interprets
statements in the GENESIS simulation language, and constitutes the operating system
‘shell’. User-defined SLI scripts were used to glue the pieces of a simulation together.
The graphical objects used to define the front end of a simulation and GENESIS data
handlers were all controlled from SLI scripts.

Developed by Michael Vanier in the late 1990’s, PyGENESIS was a version of GEN-
ESIS that replaced the standard GENESIS SLI with a Python interface [Vanier, 1997].
Leveraging the power and clear syntax of the Python scripting language PyGENESIS
in principle also could easily be bound to external Python libraries and applications.
It was nevertheless never publicly released due to the then immaturity of Python as a
scripting language. However with the current sophistication of the Python platform and
development of G-3 as a federated software architecture, Python has become a powerful
integration tool for GENESIS as described below.

2.2 Scripting Languages

Historically, there have been fundamental differences between the Unix shells and system
programming languages such as C or C-++ and scripting languages such as Perl [Wall, 1999],
Python [Martelli, 2006|, Rexx [O’Hara and Gomberg, 1988|, Tcl [Ousterhout, 1994|, and
Visual Basic. System programming languages start from the most primitive computer
elements, usually the ‘words’ of memory. They are designed to manage the complexity
of building data structures and algorithms from scratch and usually require pre-declared
data types. Alternatively, scripting languages as a replacement for shell scripts and shell
communication pipes are designed for ‘gluing’: they assume the existence of a set of pow-
erful components and are intended primarily for connecting components together. In this
way, scripting languages operate at a higher level than system programming languages
in the sense that on average a single statement does more work. For example, a typical
statement in a system programming language executes about five machine instructions,

!Note: The GENESIS SLI interface is the standard scripting language of GENESIS 2. It is also
supported by G-3 with the backward compatibility component NS-SLI.



whereas in a scripting language hundreds or thousands of machine instructions may be
executed [Ousterhout, 1998|.

The strongly typed nature of system programming languages discourages reuse.
Scripting languages, on the other hand, have actually stimulated significant software
reuse. They use a model where interesting components are built in a system program-
ming language and then glued together into applications using a scripting language.
This division of labor provides a natural framework for reusability. Components are
designed to be reusable, and there are well-defined interfaces between components and
scripts that make them easy to use. In this sense scripting and system programming
are symbiotic. Used together, they produce programming environments of exceptional
power: system programming languages are used to create functional components which
are then assembled using scripting languages.

In summary, system programming languages are well suited to building components
where the complexity is in the data structures and algorithms, while scripting languages
are well suited for integrating applications where the complexity is in the connections.
With an increasing requirement for software integration, scripting is providing an im-
portant programming paradigm.

2.3 The CBI Federated Software Architecture

The CBI (Computational Biology Initiative) federated software architecture provides
a modular paradigm that places stand-alone software components into logical relation-
ships. Each software module is an independent and standalone component such that
development and maintenance can be implemented concurrently.
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Figure 1: Relation of components in the CBI architecture.

The core components of the architecture are shown in Figure 1. On the bottom left



are databases of neuronal models or experimental data that can be accessed by the simu-
lator. Optional model processors (e.g. the Reconstruct interface, http://synapses.clm.utexas.edu/tc
load a model into the Model Container. The Model Container stores a model in
memory and makes it available to other software components in different formats. One
function of the Model Container is to translate biological concepts and properties
into mathematical concepts that can be understood by the mathematical solvers. Thus,
importantly and unlike other existing neural simulators, the mathematical solvers are
independent of the biological representation of a model. A simulation controller orches-
trates and synchronizes the actions taken by the Model Container (e.g. when to load
a model, the definition of the stimulus, and when to export a model) and mathemat-
ical solvers (when to fetch the model from the Model Container, when to start the
calculations, and what the output variables are).

A scripting layer allows the simulation system to be driven from multiple scripting
languages. Python and Perl are currently supported, as is (for backward compatibility)
the GENESIS SLI. The G-3 Graphic User Interface or GUI (G-Tube), shown at the
top of Figure 1, is entirely being developed in Python. It allows models to be imported
from databases or constructed from scratch, the exploration of model structure and
parameters, and the visualization of variables and model behavior.

Within the CBI paradigm each software component is self contained and can be run
independently. This facilitates the interoperability of software obtained from different
sources and has several important advantages for software development, including: (1)
Reduced complexity of software components compared to a unitary system, (2) simpli-
fied documentation of components in terms of inputs and outputs, (3) as a consequence
simplified development and testing of components as stand alone components, (4) clear
delineation of scope for the development of new components, and (5) individual compo-
nents can be independently updated, enhanced, or replaced when needed, making the
life cycle of a modular architecture smoother than that of a non-scalable application.

The CBI federated software architecture provides a framework for the integration of
independent software components into a functioning simulator using a scripting language
of choice. Here we specifically illustrate the use of Perl and Python for this purpose.

2.4 G-3 as a CBI Compliant Simulator

Much existing software such as GUI libraries and plotting libraries, are application neu-
tral. Other software packages are tailored to the needs of computational neuroscience.
The Neurospaces project (http://www.neurospaces.org/) provides core software com-
ponents of the G-3 simulator [Cornelis and De Schutter, 2003]. These include, (1) the
Model Container: Stores two representations of a model, the first is conceptual and
can be regarded as an enumeration of biological concepts and their relationships, the
second is an expanded mathematical representation that, if complete, can be simu-
lated, (2) Heccer: A fast compartmental solver based on the GENESIS hsolve object
that can be instantiated from C, Perl, Python or other scripting languages, (3) SSP
(Simple Scheduler in Perl): Binds Heccer and the Model Container, and activates



them correctly, such that they work together on a single simulation, (4) Studio and
G-Tube: Contain graphical tools for model construction, exploration and simulation,
(5) G-Shell (G-3 Interactive Shell): Dynamically loads other software components in
an interactive environment, and the (6) Project Browser: For inspection of projects
and simulation results. For completeness we also mention (7) NS-SLI: The G-3 com-
ponent that provides backward compatibility for the GENESIS 2 SLI. All software can
be downloaded from the GENESIS web site (http://genesis-sim.org/download/) and
extensive installation instructions with examples are available from the GENESIS doc-
umentation website (http://www.genesis-sim.org/userdocs/genesis-installation /genesis-
installation.html). Simulator correctness can be established by running automated re-
gression and integration tests.

2.5 Perl

Perl was one of the first open source scripting languages. First released in 1987 |[http://groups.google
it is unique in that it is very much informed by linguistic principles. Originally devel-
oped as a scripting language for UNIX, it aimed to blend the ease of use of the UNIX
shell with the power and flexibility of a system programming language like C. With
over 20 years of development and nearly half a million lines of code, Perl now runs on
over 100 different platforms [ref: http://www.perl.org/about.html|. Currently, there are
over 18,000 open source modules available from the Comprehensive Perl Archive Net-
work (CPAN), assisting in system integration, scientific application, and user interface
development. Via the CPAN Inline module, Perl integrates seemlessly with both system
programming languages such as C and C++, and scripting languages including Python.
Perl supports object-oriented programming, functional programming, and procedural
programming paradigms. Perl source code has been certified to contain 0.03 defects
per 1000 lines of code [http://scan.coverity.com/rung2.html]. In March 2010, 3.8 % of
all lines of programming code were written in Perl to make it the 8th most popular
programming language [Tiobe Software, 2010).

2.6 Python

Python is a powerful dynamic programming language comparable to Perl, Ruby, or
Scheme. In February 2010 more than 4.2% of all code written was developed in Python
to make it the 7th most popular programming language [Tiobe Software, 2010]. It com-
bines considerable power with very clear syntax and has modules, classes, exceptions,
and high level data types, in combination with a dynamic and loose typing. It runs
on many hardware architectures, integrates with scientific and user interface libraries,
and new modules are easily written in C or C++ (or other languages, depending on
the chosen implementation). It is also usable as an extension language for applications
written in other languages that need easy-to-use scripting or automation interfaces.



2.7 Meta-Programming in Perl and Python

Meta-programming is a programming technique where a program generates a new pro-
gram and then executes it. Application of this technique for the G-3 Perl and Python
bindings allows for the generation of an additional layer of script code that provides
increased flexibility for the definition of models and simulations. A predefined Perl or
Python data structure defines high-level interfaces and is translated into strings con-
taining Perl or Python code such as class and method definitions. These, in turn, are
then bound to the run-time environment using the Perl or Python eval functions during
program initialization.

2.8 SWIG for Federated Software Integration

SWIG was chosen to facilitate the use of Perl and Python bindings in G-3. It is a
software development tool that connects programs written in C and C+-+ with high-
level scripting languages. For the CBI federated software architecture, it provides control
over most aspects of wrapper generation and automates the generation of the required
Perl and Python interfaces. SWIG uses a layered approach to build extension modules
where different parts are defined in either C or the chosen scripting language. The C
layer contains low-level wrappers whereas the script code is used to define high-level
features. Considerably more flexibility is obtained by generating code in both languages
as an extension module can be enhanced with support code in either language. Table 1
gives an overview of the resulting code. As expected, low-level software components
emphasize low-level languages and have more lines of code (e.g. C), whereas, high-level
software components emphasize high-level languages and have fewer lines of code (e.g.
Python, Perl).

Language: C (H) C (G) | Perl (H) | Perl (G) | Python (H) | Python (C
Model Container | 1,832,580 | 4,416,163 | 30,406 207,638 14,568 250,178
Heccer 1,163,991 | 1,575,615 | 57,565 | 107,261 1,586 171,219
NS-SLI 1,448 636 | 483,641 | 4,603 2,802 — —
SSP 829 2,323 595,063 — — —
Studio — — 174,923 — — —
G-Shell — — 28,142 — 623 836

Table 1: Languages Used: Comparison of hand-written (H) and generated (G) code
character counts.
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3 Results

3.1 A Python Enabled Neural Simulator

Both Python and Perl use modules to group related functions together. The G-3 script-
ing bindings use modules to separate interfaces for simple models with many default
settings (e.g. to start a new research project) from more complicated interfaces that
expose the full functionality of the simulator.

As an example the Python Neurospaces.SingleCellContainer module contains func-
tions to simplify the storage of single neuron models in computer memory. This module
is a simplified front-end to the more complicated Neurospaces module. Neurospaces
interfaces with the Model Container which is coded in an efficient system program-
ming language. Likewise, Heccer.SimpleHeccer is a wrapper module around the Heccer
component which in turn is an interface to the low-level single neuron solver. Other
components are under construction to facilitate network modeling.

Here we show a simple high-level Python script? that runs a simulation of a single
cylindrical segment defined by standard values for the parameters of membrane and axial
resistance and membrane capacitance (RM, RA, and CM, respectively). These parameters
are given by their specific values as commonly reported in the literature, instead of
their actual values scaled to the compartment surface area as used by a mathematical
solver [Cornelis and De Schutter, 2004]. The following script defines a Python function
run_ simulation and runs it when invoked from a shell command line. The script can
also be imported as a Python module, thus allowing access to the function. We call this
Python module example.

#!/usr/bin/python

# load the SingleCellContainer library

import sys
sys.path.append(’/usr/local/glue/swig/python’)
import Neurospaces.SingleCellContainer

# A function to run a simulation of a single cylindrical segment.
def run_simulation(simulationtime):

# create a cell for simulation
¢ = Neurospaces.SingleCellContainer.Cell("/cell");

# create a cylindrical segment inside the cell, and set its properties
s = Neurospaces.SingleCellContainer.Segment ("/cell/soma");

.parameter ("Vm_init", -0.0680)
.parameter ("RM", 1.000)
.parameter ("RA", 2.50)
.parameter ("CM", 0.0164)

n n n n

2The given code is written for clarity of the paper rather than for compactness or efficiency with
relation to the scripting language used.



s.parameter ("ELEAK", -0.0800)

0

.parameter ("DIA", 2e-05)
.parameter ("LENGTH", 4.47e-05)

0

H

first example: apply current injection to the soma
.parameter ("INJECT", 1le-9)

]

# second example: use a wildcard to activate endogenous synapses

Neurospaces.SingleCellContainer.query("setparameter spine::/Purk_spine/head/par 25")

Neurospaces.SingleCellContainer.query("setparameter thickd::gaba::/Purk_GABA 1")

# redirect output to the given file
Neurospaces.SingleCellContainer.set_output_filename("/tmp/output")

# compile the model
Neurospaces.SingleCellContainer.compile("/cell")

# define the output variables
Neurospaces.SingleCellContainer.output("/cell/soma", "Vm")

# run the simulation
Neurospaces.SingleCellContainer.run(simulationtime)

# The main program executes a simulation of 0.5 seconds.
# The if statement allows this file to used as an executable script and as a library.

if __name__ == ’__main__’:

run_sumulation(0.5)

Due to the CBI federated software architecture, the G-3 platform provides many
user interfaces. As an example, the compartmental solver Heccer can be driven stand-
alone from C code, from Python, or from Perl to run the simplest models, or it can
be integrated with the Mlodel Container for running more realistic multicompartment
models based on morphological data. To illustrate this flexibility we now compare the
above Python script with alternative implementations in C and the G-2 SLI.

In the C code there is an abundance of low level detail that interfaces directly to
the solver. For example compartments are identified by their position in an array, and
parameters such as RM and CM must be provided as an ordered sequence of their actual
values (scaled to the compartment surface area).

The complexity of the G-2 SLI interface falls between that of the Python and Perl
interfaces, and the C code interface. While compartments and parameters have names,
numerical values are given in a format used by solvers.

10



C Code Implementation
#include "heccer/compartment.h"
struct Compartment compSoma =
{

// type of structure

{ MATH TYPE_ Compartment, },

-1, // no parent compartment
4.57537e-11, // Cm

-0.08, // Em

-0.068, // InitVm

le-9, // Inject 360502, // Ra

GENESIS 2 SLI Implementation

create neutral /cell

create compartment /cell /soma
setfield /cell/soma dia 2e-05

setfield /cell/soma len 4.47e-05
setfield /cell/soma Cm 4.60608e-11
setfield /cell/soma Em -0.0800
setfield /cell/soma Vm_ init -0.068
setfield /cell/soma Ra 355711
setfield /cell/soma Rm 3.56051e-+08

3.58441e+08, // Rm
I
setfield /cell/soma inject 1e-9

// compartment and channel mapping
int piC2m|| = 0, -1, ;

// model definition
struct Intermediary inte r =
{1, &compSoma, NULL, piC2m, };

// main simulation script
#include "main.c" reset
step 0.5 -time

While Python and Perl bindings are suitable for construction of toy models from
scratch, it is better to use a domain specific language to construct the various parts
of a model. For example, the Model Container is installed with a library of domain
specific model components where the standard Hodgkin-Huxley channels are provided
in the file channels/hodgkin-huzley.ndf. These channels can be included in the example
given above by adding the Python statements:

s.import_child("channels/hodgkin-huxley.ndf::/k")
s.import_child("channels/hodgkin-huxley.ndf::/na")

The Model Container can export models constructed in Perl, Python or other
scripting languages as a library for incorporation into new models or for use with other
tools such as the Project Browser. These new models can then be imported by a call
to the Neurospaces read method. For example, importing a Purkinje cell model with
over 4000 compartments may be done with the following statement:

Neurospaces.SingleCellContainer.read("cells/purkinje/edsjb1994.ndf")

11



After importation the Model Container provides a set of functions to analyze the
structure of the model morphology. For example, the names of the most distal segment
of each dendrite can be obtained with:

Neurospaces.SingleCellContainer.query("segmentertips /Purkinje")

3.2 Interactive Query and Simulation

The G-Shell is a G-3 software component that integrates other software components
and makes their functions available through an interactive environment. Coded in Perl,
the G-Shell is a communication abstraction layer for other software components such
as the Model Container, Heccer, SSP and the Studio. After the G-Shell has been
started from a system shell with

genesis-g3

the list of loaded software components is printed to the screen after issuing the
command:

list components

Each loaded software component will be shown with associated status information
helping in the diagnosis of possible problems. For example after correct initialization of
the Model Container its status information should appear as:

model-container:
description: internal storage for neuronal models
integrator: Neurospaces::Integrators::Commands
module: Neurospaces
status: loaded
type:
description: intermediary
layer: 2
Integration of the G-Shell with the Model Container allows for real-time analysis
of the quantitative and structural aspects of a neuronal morphology. The library of
model components that is installed with the Model Container provides a definition of
a model Purkinje cell in the file cells/purkinje/edsjb1994.ndf. The command:

ndf_load cells/purkinje/edsjb1994.ndf

will make the model Purkinje cell available for interactive analysis. Alternatively, if
the model is encoded in a GENESIS 2 SLI script with name PurkM9 model/CURRENTY.g
the command ndf load can be replaced with sli_load:

sli_load PurkM9_model/CURRENT9.g

12



This command imports the model that is specified in the SLI script without running
the simulation. A similar command (pynn_ load) is in development to interface with the
PyNN network modeling environment |[Davison et al., 2008].

Given the name of one of its dendritic segments, the number of branch points between
that segment and the soma can be determined. After indicating which paths of the
dendritic tree must be examined, the parameter SOMATOPETAL_BRANCHPOINTS contains
the result, which can be obtained with:

morphology_summarize /Purkinje
show_parameter /Purkinje/segments/b1s06[182] SOMATOPETAL_BRANCHPOINTS

After finding a suitable dendritic segment, its synaptic channel can be stimulated
with a precomputed spike train that is stored in a file with, for example, the filename
event_data/events.yml:

set_runtime_parameter /Purkinje/segments/b1s06[182]/Purkinje_spine_0/head/par/synapse
EVENT_FILENAME ¢‘event_data/events.yml’’

Finally, following the addition of an output comprising the somatic membrane po-
tential, a simulation can conveniently be started using:

add_output /Purkinje/segments/soma Vm
run /Purkinje 0.1

This outputs the somatic response to the stimulus in a file named by default as
/tmp /output.

To query the parameters of the stimulated compartment the model can then be
analyzed using the graphical front-end of the Studio with the command:

explore

Figure 2 shows sample output of running this command. Other capabilities of the
Studio include rendering morphologies in three dimensions and generating overviews of

network models (not shown). In the next section we explore more graphical capabilities
of G-3.

3.3 Gluing Pre-existing Applications & Libraries

In the past, the graphical interface to G-2 was provided by the X-Window System
Output and Display Utility for Simulations (XODUS). The XODUS interface made
graphical objects available that could be connected to model components from within
the SLI. Rather than providing a full GUI instance, the flexibility of XODUS came from
its infrastructure which allowed modelers to easily develop new GUIs dedicated to their
research and teaching projects®. However, the XODUS paradigm inevitably allowed
modelers to contaminate their model script with GUI related statements.

3The official G-2 software distribution contains both simple and sophisticated example GUIs.
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Figure 2: Using the Studio to query a model and its parameters.

As mentioned above, one advantage of the CBI federated software architecture is
that it defines how to interface simulator components with external applications. An
obvious example is the use of existing 3D graphics software to examine and edit the
spatial properties of a model neuron morphology. Others include, integration with
external graphing and windowing software to plot the values of solved variables against
simulation time, or to allow the construction of button-rich tutorial applications.

GUTI libraries typically communicate with other software components using an event
based system. The functional core of this system is an event dispatching loop, usually
called the main loop. The binding between button click event and the main loop, and the
visual layout of most contemporary GUI applications is conveniently constructed using
one of a number of available user interface builders. wzFormBuilder® is such an interface
builder which allows a user to construct a GUI with visual elements such as menus and
buttons, and write a description of the elements and their bindings to a file known as
an XML resource (XRC) file. The GUI definitions in this file can then be rendered
with the freely available wzWidgets library and its Python front end wzPython. Further
integration with additional G-3 specific data bindings ensures that, for example, the data
produced by a mathematical solver flows to a widget that plots the value of a variable
against time. This functionality replaces the G-2 XODUS paradigm, that required SLI
scripting to connect GUI components to model components and simulation actions, with
a more contemporary paradigm that separates simulator and model scripts from GUI

4A user interface designer for the wxzPython toolkit and the Linux desktop environment GNOME,
available from http://wxformbuilder.org/.
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related statements.

In the following example we create a wzPython application class called G3App. This
demonstrates the Python scripting required to connect the software components that
create a small GUI for G-3. We specifically show how to initialize the application (im-
plementation of method Onlnit), how to run a simple simulation based on the previous
example (method OnRun), and how to plot output (method Plot). For this, it is as-
sumed that a XRC file with the name G&.zrc can be found that describes a GUI with
one frame (here, mainFrame) which allows the simulation duration to be set via a text
control and contains a button to start the simulation.

The first lines of code in the script load the necessary Python modules which then
load low-level libraries coded in a system programming language. The importation of
example makes the previously defined function run_ simulation available. The DataPlot
class is a specialized class to read in GENESIS data output and load it into a wzPython
plot widget. The import of wz references a system wide install of wxzPython and makes
the GUI functions of wxWidgets available to our script.

import DataPlot
import example
import wx

from wx import xrc

To ensure correct system initialization via the method Onlnit, our G3App class is
declared to inherit the functions of the wz.App class.

class G3App(wx.App):

def OnInit(self):

After correct system initialization, application specific initialization can start. In-
side the OnlInit method we first load the XML resource file previously created using
wrFormBuilder.

self.res = xrc.XmlResource(’G3.xrc’)

The GUI elements are then retrieved from the XRC specification and made available
as Python objects. Each declared element can be retrieved via its name:

self.frame = self.res.LoadFrame(None, ’mainFrame’)
self.durationTextCtrl = xrc.XRCCTRL(self.frame, ’durationTextCtrl’)
self.runButton = xrc.XRCCTRL(self.frame, ’runButton’)

After retrieving the run button, we bind it to the method OnRun (given below).
This translates the GUI event generated when the run button is clicked to an action
that invokes the OnRun method.

self.frame.Bind (wx.EVT_BUTTON, self.OnRun, self.runButton)
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The OnRun method reads a numerical value for the the simulation time from a text
control widget (durationTextCtrl) and stores it in a variable. This variable is then passed
to the function run_ simulation. After the simulation is complete a call to a Plot method
is made. This displays the generated data in a wzPython plot widget.

def OnRun(self,evt):

simulation_time = float(self.durationTextCtrl.GetValue())
example.run_simulation(simulation_time)
self.Plot(’/tmp/output’)

The Plot method uses the DataPlot class to display G-3 data output with a wxPython
plot widget. The DataPlot widget is part of the libraries of the G-Tube, a Python GUI
under development for G-3.

def Plot(self,datafile):

plotwindow = wx.Frame(self.frame, -1, "Graph display", (480,300))
plotpanel = wx.Panel(plotwindow, -1)

self.dataplot = DataPlot.DataPlot(plotpanel, -1,
’/tmp/output’,
’Example Plot’,
’Time (Seconds)’,
’Membrane Potential (Volts)?’)

vbox_sizer = wx.BoxSizer (wx.VERTICAL)
vbox_sizer.Add(self.dataplot, 1, wx.EXPAND)
plotpanel.SetAutoLayout (True)
plotpanel.SetSizer (vbox_sizer)
plotpanel.Layout ()

plotwindow.Show ()

The code of the GUT application (G3App) is terminated with a call to the main event
loop of wxPython.

if __name == ’__main__’:

app = G3App(False)
app-MainLoop ()

In this example we have shown how the CBI architecture defines a separation be-
tween GUI statements and peripheral code such as input and output specifications, and
model construction. Besides allowing common GUI construction kits to be used for the
development of research and educational projects, the approach also allows interfacing
to more specialized GUI kits. This is illustrated with the following example.
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3.4 Interfacing GENESIS with Blender

Blender (http://www.blender.org/) is a free open source 3D content creation suite avail-
able for all major operating systems that have Python enabled bindings. The Python
environment of Blender has the restriction that the code must be run from inside the
Blender specific Python interpreter. In doing this, Blender replaces the functionality
otherwise provided by the G-Shell. It allows the state-of-the-art rendering functions of
Blender to be used to validate and analyze models of the morphology of small dendritic
segments obtained from electron microscopy data.

Over the last several years electron microscopy (EM) in conjunction with Recon-
struct [Fiala, 2005] has been used to obtain precise morphologies of small segments of
Purkinje cell dendrites [Huo et al., 2009, Cornelis et al., 2007].

Figure 3: Blender image of Purkinje neuron dendritic segment.

The Reconstruct interface converts the Reconstruct application into a G-3 simulator
component by making it CBI compliant. This allows Reconstruct data to be imported
into the Model Container. The core of the interface implements geometrical trans-
formation algorithms that convert EM contours provided by Reconstruct to equivalent
cylinders suitable for cable modeling. The geometrical properties of the cylinders are
stored in the native G-3 file format and algorithms provided by the Model Container
link them with the cable parameters required by the mathematical solvers. A simulation
can then be run with the read and run methods given above.

The necessary conversion algorithms are accessible from the Model Container via
Python. The Python interface of Blender links it to the G-3 simulator, such that Blender
is the first G-3 3D model inspection tool for EM data. As an example, the Python script
developed above can be run from within the Blender environment. Also, via the same
Python interface, simulations can be started based on the 3D image data.
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Interactive visualization of reconstructed dendritic segments is a valuable method of
model validation and is available with the interface of G-3 with Blender (see Figure 3).
However, the development of small focused plugins allows for more than just these
functions. For example, 3D measurement and manipulation of neuron morphology,
computation of surface areas and volumes, and the generation of 3D crossections and
2D cuts also becomes possible.

4 Discussion

The Python and Perl bindings of the G-3 simulator embed similar concepts to the G-2
SLI, although their purpose is different. While the SLI had as major goals the integration
of model components, running simulations, and output collection, the primary goal of
scripting languages such as Perl and Python has become application integration.
Software libraries can either provide general support or can be tailored for specific
scientific disciplines. Through the Neurospaces project, GENESIS now provides a series
of independent software components that can be combined to support computational
modeling in the neurosciences. Scripting languages such as Python and Perl then provide
powerful integration tools to connect these software components to general purpose
libraries for GUI application development, result visualization and data analysis.

4.1 From Monolithic Software Applications to Modular Frame-
works

The development of the GENESIS simulator was initiated during the eighties through re-
search projects that addressed specific scientific questions in computational neuroscience.
Software development was then continued with a life cycle of research project extensions.
For example the libraries for kinetic pathway modeling were added for projects investi-
gating how signalling networks store learned behaviour [Bhalla and Iyengar, 1999] and
how light regulates release from intracellular calcium stores for photoreception [Blackwell, 2000].
The fast implicit solver was developed with the specific focus of complex Purkinje cell
modeling [De Schutter and Bower, 1994a, De Schutter and Bower, 1994b| and more re-
cently synaptic learning rules have been implemented [Giinay et al., 2008|. In principle
such linear or single-threaded development processes can continue forever. However,
repetitive extension of the GENESIS simulator with source code of diverse functions
and origin ultimately made the code structure so complicated that it became difficult,
if not impossible, to extend. Because of the density of the G-2 source code the appli-
cation became become 'monolithic’ and user contributions to simulation functionality
were minimalized.

In the paradigm of the CBI federated software architecture, model parameters are
stored and processed separately from stimulus protocols and the way simulations are
run. This greatly facilitates the development and maintenance of individual software
components for G-3. As examples of the added functionality this approach allows, we
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have shown the ability of the Model Container to query the structure of a neuronal
morphology, and how to run a simple model using Heccer. The CBI federated software
architecture also defines clear boundaries for integration using existing scripting tech-
nology. For example, an interactive simulation of a Purkinje cell model after unitary
synaptic stimulation can be connected to a predefined spike train stored in a file. In
this way software improvements can be achieved using parallel software development
processes for stand-alone software components rather than the more linear ones typical
of centrally developed monolithic software applications.

4.2 Extensibility in The G-3 Software Federation

An important benefit of the CBI federated software architecture is that third party
software libraries become available for users. For example, wzFormBuilder can be used to
generate GUI bindings for wzPython and integrate them with the G-3 software platform.

To demonstrate the additional power of our approach, we have interfaced G-3 with
Reconstruct and Blender. This novel software platform has been used for visual inspec-
tion and validation of reconstructed dendrites by connecting a model to the geometrical
and analytical tools provided by the Blender plugin library. Further, we note that it
is also possible to use Blender to instantiate neural simulations and, for example, to
collect simulation output data for movie generation. We now give an overview of our
ongoing efforts to interface the G-3 simulator with external libraries and applications.

Complementary functionality to that provided by interfacing G-3 with Blender would
be available after interfacing G-3 with neuroConstruct (http://www.neuroconstruct.org/),
a software package designed to simplify the development of complex networks of bio-
logically realistic neurons|Gleeson, 2005, Gleeson et al., 2007]. Implemented in Java,
neuroConstruct uses the latest NeuroML specifications (see http://www.neuroml.org/,
http://www.morphml.org/), can be used to visually validate network layout and de-
sign [Crook et al., 2007], and can be connected to Python applications (e.g. see http://www.jython.c
In principle this allows it to be integrated with other simulators that have Python bind-
ings, including NEURON, NEST, and G-3.

A serial communication framework for event delivery of action potentials to post-
synaptic targets has been developed. Called the Discrete Event System (DES), this
software component is integrated with the mathematical solvers of G-3 using either
Perl or Python. Because it is optimized for communication over serial hardware, DES
can be extended to support communication frameworks for parallel hardware such as
those provided by the MOOSE simulator [Ray and Bhalla, 2008| and the MUSIC frame-
work [Djurfeldt et al., 2010].

The NeuroMorpho.Org database of neuronal morphologies (http://www.neuromorpho.org/)
is a centrally curated inventory of digitally reconstructed neurons [Ascoli, 2006]. The
digital reconstruction of neuronal arborization is an important step in the quantitative
investigation of cellular neuroanatomy. Allowing extensive morphometric analysis, it is
the first step in the implementation of biophysical models of electrophysiology. Direct
interfacing with the functionality of the Mlodel Container accelerates the development
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of neuronal models by providing a direct link to data from experiments. Preliminary
implementations of this functionality are now part of an automated test framework for
G-3.

GG-3 also significantly extends the ability of GENESIS to directly interact with exper-
imental technologies such as open source dynamic clamp software. As an example, the
modular approach taken by the RTXI platform for dynamic clamp [Bettencourt et al., 2008,
Dorval et al., 2001| and the modular structure of G-3 mean that the solver, Heccer, can
be directly integrated as an RTXI plug-in [Cornelis and Coop, 2010|. This greatly sim-
plifies the required software development.

Ultimately, the extensibility of the CBI federated software architecture provides an
extremely plastic environment within which independent components can be integrated
with a scripting language of choice.

4.3 Implications for Neuronal Simulator Interoperability

The current generation of neural simulators can be characterized as software applications
that support a user workflow extending from model construction to data analysis. Many

of these simulators support Python bindings because of their ease of use [Pecevski et al., 2009]
and simplicity [Goodman and Brette, 2008]. They range from Monte-Carlo simulators

for reaction-diffusion systems [Wils and Schutter, 2009] and dedicated large network sim-
ulators [Eppler et al., 2008] to the general purpose NEURON and GENESIS 2 simula-
tors [Hines et al., 2009, Bower and Beeman, 1998|.

For these simulators interoperability is more easily implemented using one of the
emerging standards for model exchange such as NeuroML |Goddard et al., 2001], NineML |Gortechn
and PyNN [Davison et al., 2008|. While dedicated G-3 modules supporting the use of
these interoperability standards are currently under development, the G-3 platform now
also provides an alternative approach that uses scripting to connect neuroscience spe-
cific software to general purpose software and integrate it into a next generation neural
simulator.

4.4 Federated Software Development in Neuroscience

Processes of software development have traditionally been described as either cathedral-
style where there is a closed developer group under central direction and software re-
leases are infrequent, or, alternatively, bazaar-style where the software is developed by
volunteers and software releases occur early and often [Raymond, 2001, Brooks, 1995|.
While cathederal-style software development leads to a single-threaded development cy-
cle commonly used by commercial applications, the bazaar-style leads to multi-threaded
development cycles of applications that come in different flavours®.

Here, based on the CBI paradigm, we have outlined a solution for multi-threaded
development of software components for neuroscience (for other examples of this ap-

A typical example is the family of editors based on Emacs.
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proach to neural simulation see [King et al., 2009, Nordlie and Plesser, 2009]). We have
given examples that use Python and Perl.

Employed in this way, the modularized design of the G-3 simulator gives rise to an
ecology of software components that can be glued together in a variety of ways providing
for progressive federated software development.
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