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AbstratThe GENESIS (GEneral NEural SImulation System, http://genesis-sim.org/) simula-tion platform was one of the �rst broad-sale modeling systems in omputational bi-ology to enourage modelers to develop and share model features and omponents.Supported by a large developer ommunity the GENESIS simulator partiipated ininnovative simulator tehnologies suh as benhmarking [Bhalla et al., 1992℄, paralleliza-tion [Goddard and Hood, 1998℄ and delarative model spei�ation [Goddard et al., 2001℄and it was the �rst neural simulator to de�ne binding for the Python sripting lan-guage [Vanier, 1997℄.An important feature of the latest version of GENESIS, GENESIS 3.0 (G-3), is that itdeomposes into self-ontained software omponents, that onform to the CBI simulatorarhiteture [Cornelis et al., 2008℄. This federated arhiteture allows separate sriptingbindings to be de�ned for the mathematial solvers and the GUI, as well as for otherneessary simulator omponents.Python and Perl are sripting languages that provide rih sets of freely availableopen soure libraries [Langtangen, 2004, Valiente, 2009℄. With a lean dynami objet-oriented design produing highly readable ode, Python and Perl are widely employed inspeialized areas of software omponent integration [Thiruvathukal et al., 2001, Lee and Ware, 2007℄.SWIG (Simpli�ed Wrapper and Interfae Generator [08:, 2008℄) examines an appliationprogramming interfae (API) and makes it available to a sripting language of hoie.This way the software omponents of the G-3 simulator an be glued together, instan-tiated and onneted to external libraries and appliations from user-de�ned sripts ineither Python or Perl.We illustrate this approah with examples using Python sripting. The �rst exampleuses a mathematial solver as a stand-alone software omponent driven from a Pythonsript that generates and runs a simple single ompartment model neuron. This sript isthen ontrasted with C ode and GENESIS 2 (G-2) implementations that onnet to thesame mathematial solver. The seond example interfaes the mathematial solver to amodeling environment for the exploration of a neuron morphology from an interativeommand-line and a graphial shell. The third example applies sripting bindings toonnet the G-3 simulator to external graphial libraries and an open soure 3D ontentreation suite. This allows us to visualize 3D models based on eletron mirosopy andonvert them to omputational models [Cornelis et al., 2007℄.Employed this way the stand-alone software omponents of the G-3 simulator providea framework for progressive federated development in the omputational neurosienes.1 IntrodutionGENESIS is a general purpose simulation platform that was originally developed tosupport the simulation of neural systems ranging from subellular omponents andbiohemial reations to omplex models of single neurons, simulations of large net-works, and systems-level models. The software development of the GENESIS sim-2



ulator was initiated during the 1980's through researh projets that addressed spe-i� sienti� questions in omputational neurosiene and was then logially ontin-ued with a life yle of researh projet extensions. For example the libraries forkineti pathway modeling were added for projets investigating how signalling net-works store learned behaviour [Bhalla and Iyengar, 1999℄ and how light regulates re-lease from intraellular alium stores for photoreeption [Blakwell, 2000℄. The fastimpliit solver was developed with the spei� fous of omplex Purkinje ell model-ing [De Shutter and Bower, 1994a, De Shutter and Bower, 1994b℄ and more reentlysynapti learning rules have been implemented [Günay et al., 2008℄. In priniple suhlinear or single-threaded development proesses an ontinue forever. However, repet-itive extension of the GENESIS simulator with soure ode of diverse funtions andorigin ultimately made the ode struture so ompliated that it beame inreasinglydi�ult, if not impossible, to extend. Beause of the density of the GENESIS 2 (G-2)soure ode the appliation beame `monolithi' while user ontributions to simulationfuntionality were marginalized. Ultimately, releases and updates beame less frequentand the software life yle moved from extension to maintenane.GENESIS 3 (G-3) is a major revision and update of the GENESIS simulation system.The ore simulator funtionality has been restrutured, with a more modern modulardesign (the CBI federated software arhiteture, desribed below). This not only resultsin improved simulator performane and portability, but also allows the use of new sriptparsers and user interfaes, as well as the ability to ommuniate with other modelingprograms and environments. The CBI federated software arhiteture is spei�allydesigned to support the integration of stand-alone software omponents and appliationsby using ommon integration tehnologies suh as modern sripting languages.2 Methods & SoftwareStarting from the existing soure ode base, and taking lessons from the past, G-3 is amodularization of the ore funtions of the G-2 simulator. The guiding priniple for thede�nition of the ore funtions of the G-3 simulator is what is referred to as the CBIfederated software arhiteture, a modular abstrated arhiteture that layers the datain a simulator and separates the data representations from the algorithms to proessthem. This is desribed in more detail in the next setions.2.1 GENESIS 2GENESIS is a general purpose simulation platform that was developed to support thesimulation of neural systems ranging from subellular omponents and biohemial re-ations to omplex models of single neurons, simulations of large networks, and systems-level models. It was the �rst broad sale modeling system in omputational biology toenourage modelers to develop and share model features and omponents. For thesepeople, it was the objet-oriented approah taken by the simulator along with its high-3



level simulation language that allowed the exhange, modi�ation, and reuse of modelsor model omponents.GENESIS simulations are onstruted from model omponents that reeive inputs,perform alulations on them, and then generate outputs. Model neurons are on-struted from basi parts, suh as ompartments, and variable ondutane ion han-nels. Channels are linked to their ompartments whih are then linked together to formmulti-ompartmental neurons of any desired level of omplexity. Neurons may be on-neted together to form neural iruits. It is the paradigm used by the GENESIS 2 sriptlanguage interpreter (SLI), the ommands whih it reognizes, and the main GENESIS`objets' available for onstruting simulations that have most powerfully assisted in thesharing of model features amongst the broader modeling ommunity.A high-level simulation language, the GENESIS SLI 1, provided a framework withinwhih a modeler ould easily extend the apabilities of the simulator and manipulatemodels or model omponents by exhange, modi�ation, and reuse. The SLI interpretsstatements in the GENESIS simulation language, and onstitutes the operating system`shell'. User-de�ned SLI sripts were used to glue the piees of a simulation together.The graphial objets used to de�ne the front end of a simulation and GENESIS datahandlers were all ontrolled from SLI sripts.Developed by Mihael Vanier in the late 1990's, PyGENESIS was a version of GEN-ESIS that replaed the standard GENESIS SLI with a Python interfae [Vanier, 1997℄.Leveraging the power and lear syntax of the Python sripting language PyGENESISin priniple also ould easily be bound to external Python libraries and appliations.It was nevertheless never publily released due to the then immaturity of Python as asripting language. However with the urrent sophistiation of the Python platform anddevelopment of G-3 as a federated software arhiteture, Python has beome a powerfulintegration tool for GENESIS as desribed below.2.2 Sripting LanguagesHistorially, there have been fundamental di�erenes between the Unix shells and systemprogramming languages suh as C or C++ and sripting languages suh as Perl [Wall, 1999℄,Python [Martelli, 2006℄, Rexx [O'Hara and Gomberg, 1988℄, Tl [Ousterhout, 1994℄, andVisual Basi. System programming languages start from the most primitive omputerelements, usually the `words' of memory. They are designed to manage the omplexityof building data strutures and algorithms from srath and usually require pre-delareddata types. Alternatively, sripting languages as a replaement for shell sripts and shellommuniation pipes are designed for `gluing': they assume the existene of a set of pow-erful omponents and are intended primarily for onneting omponents together. In thisway, sripting languages operate at a higher level than system programming languagesin the sense that on average a single statement does more work. For example, a typialstatement in a system programming language exeutes about �ve mahine instrutions,1Note: The GENESIS SLI interfae is the standard sripting language of GENESIS 2. It is alsosupported by G-3 with the bakward ompatibility omponent NS-SLI.4



whereas in a sripting language hundreds or thousands of mahine instrutions may beexeuted [Ousterhout, 1998℄.The strongly typed nature of system programming languages disourages reuse.Sripting languages, on the other hand, have atually stimulated signi�ant softwarereuse. They use a model where interesting omponents are built in a system program-ming language and then glued together into appliations using a sripting language.This division of labor provides a natural framework for reusability. Components aredesigned to be reusable, and there are well-de�ned interfaes between omponents andsripts that make them easy to use. In this sense sripting and system programmingare symbioti. Used together, they produe programming environments of exeptionalpower: system programming languages are used to reate funtional omponents whihare then assembled using sripting languages.In summary, system programming languages are well suited to building omponentswhere the omplexity is in the data strutures and algorithms, while sripting languagesare well suited for integrating appliations where the omplexity is in the onnetions.With an inreasing requirement for software integration, sripting is providing an im-portant programming paradigm.2.3 The CBI Federated Software ArhitetureThe CBI (Computational Biology Initiative) federated software arhiteture providesa modular paradigm that plaes stand-alone software omponents into logial relation-ships. Eah software module is an independent and standalone omponent suh thatdevelopment and maintenane an be implemented onurrently.

Figure 1: Relation of omponents in the CBI arhiteture.The ore omponents of the arhiteture are shown in Figure 1. On the bottom left5



are databases of neuronal models or experimental data that an be aessed by the simu-lator. Optional model proessors (e.g. the Reonstrut interfae, http://synapses.lm.utexas.edu/tools/reonstrut/reonstrut.stm)load a model into the ModelContainer. The ModelContainer stores a model inmemory and makes it available to other software omponents in di�erent formats. Onefuntion of the ModelContainer is to translate biologial onepts and propertiesinto mathematial onepts that an be understood by the mathematial solvers. Thus,importantly and unlike other existing neural simulators, the mathematial solvers areindependent of the biologial representation of a model. A simulation ontroller orhes-trates and synhronizes the ations taken by the ModelContainer (e.g. when to loada model, the de�nition of the stimulus, and when to export a model) and mathemat-ial solvers (when to feth the model from the ModelContainer, when to start thealulations, and what the output variables are).A sripting layer allows the simulation system to be driven from multiple sriptinglanguages. Python and Perl are urrently supported, as is (for bakward ompatibility)the GENESIS SLI. The G-3 Graphi User Interfae or GUI (G-Tube), shown at thetop of Figure 1, is entirely being developed in Python. It allows models to be importedfrom databases or onstruted from srath, the exploration of model struture andparameters, and the visualization of variables and model behavior.Within the CBI paradigm eah software omponent is self ontained and an be runindependently. This failitates the interoperability of software obtained from di�erentsoures and has several important advantages for software development, inluding: (1)Redued omplexity of software omponents ompared to a unitary system, (2) simpli-�ed doumentation of omponents in terms of inputs and outputs, (3) as a onsequenesimpli�ed development and testing of omponents as stand alone omponents, (4) leardelineation of sope for the development of new omponents, and (5) individual ompo-nents an be independently updated, enhaned, or replaed when needed, making thelife yle of a modular arhiteture smoother than that of a non-salable appliation.The CBI federated software arhiteture provides a framework for the integration ofindependent software omponents into a funtioning simulator using a sripting languageof hoie. Here we spei�ally illustrate the use of Perl and Python for this purpose.2.4 G-3 as a CBI Compliant SimulatorMuh existing software suh as GUI libraries and plotting libraries, are appliation neu-tral. Other software pakages are tailored to the needs of omputational neurosiene.The Neurospaes projet (http://www.neurospaes.org/) provides ore software om-ponents of the G-3 simulator [Cornelis and De Shutter, 2003℄. These inlude, (1) theModel Container: Stores two representations of a model, the �rst is oneptual andan be regarded as an enumeration of biologial onepts and their relationships, theseond is an expanded mathematial representation that, if omplete, an be simu-lated, (2) Heer: A fast ompartmental solver based on the GENESIS hsolve objetthat an be instantiated from C, Perl, Python or other sripting languages, (3) SSP(Simple Sheduler in Perl): Binds Heer and the ModelContainer, and ativates6



them orretly, suh that they work together on a single simulation, (4) Studio andG-Tube: Contain graphial tools for model onstrution, exploration and simulation,(5) G-Shell (G-3 Interative Shell): Dynamially loads other software omponents inan interative environment, and the (6) ProjetBrowser: For inspetion of projetsand simulation results. For ompleteness we also mention (7) NS-SLI: The G-3 om-ponent that provides bakward ompatibility for the GENESIS 2 SLI. All software anbe downloaded from the GENESIS web site (http://genesis-sim.org/download/) andextensive installation instrutions with examples are available from the GENESIS do-umentation website (http://www.genesis-sim.org/userdos/genesis-installation/genesis-installation.html). Simulator orretness an be established by running automated re-gression and integration tests.2.5 PerlPerl was one of the �rst open soure sripting languages. First released in 1987 [http://groups.google.om/group/omp.soures.unix/msg/bb3ee125385ae25f?pli=1℄,it is unique in that it is very muh informed by linguisti priniples. Originally devel-oped as a sripting language for UNIX, it aimed to blend the ease of use of the UNIXshell with the power and �exibility of a system programming language like C. Withover 20 years of development and nearly half a million lines of ode, Perl now runs onover 100 di�erent platforms [ref: http://www.perl.org/about.html℄. Currently, there areover 18,000 open soure modules available from the Comprehensive Perl Arhive Net-work (CPAN), assisting in system integration, sienti� appliation, and user interfaedevelopment. Via the CPAN Inline module, Perl integrates seemlessly with both systemprogramming languages suh as C and C++, and sripting languages inluding Python.Perl supports objet-oriented programming, funtional programming, and proeduralprogramming paradigms. Perl soure ode has been erti�ed to ontain 0.03 defetsper 1000 lines of ode [http://san.overity.om/rung2.html℄. In Marh 2010, 3.8% ofall lines of programming ode were written in Perl to make it the 8th most popularprogramming language [Tiobe Software, 2010℄.2.6 PythonPython is a powerful dynami programming language omparable to Perl, Ruby, orSheme. In February 2010 more than 4.2% of all ode written was developed in Pythonto make it the 7th most popular programming language [Tiobe Software, 2010℄. It om-bines onsiderable power with very lear syntax and has modules, lasses, exeptions,and high level data types, in ombination with a dynami and loose typing. It runson many hardware arhitetures, integrates with sienti� and user interfae libraries,and new modules are easily written in C or C++ (or other languages, depending onthe hosen implementation). It is also usable as an extension language for appliationswritten in other languages that need easy-to-use sripting or automation interfaes.
7



2.7 Meta-Programming in Perl and PythonMeta-programming is a programming tehnique where a program generates a new pro-gram and then exeutes it. Appliation of this tehnique for the G-3 Perl and Pythonbindings allows for the generation of an additional layer of sript ode that providesinreased �exibility for the de�nition of models and simulations. A prede�ned Perl orPython data struture de�nes high-level interfaes and is translated into strings on-taining Perl or Python ode suh as lass and method de�nitions. These, in turn, arethen bound to the run-time environment using the Perl or Python eval funtions duringprogram initialization.2.8 SWIG for Federated Software IntegrationSWIG was hosen to failitate the use of Perl and Python bindings in G-3. It is asoftware development tool that onnets programs written in C and C++ with high-level sripting languages. For the CBI federated software arhiteture, it provides ontrolover most aspets of wrapper generation and automates the generation of the requiredPerl and Python interfaes. SWIG uses a layered approah to build extension moduleswhere di�erent parts are de�ned in either C or the hosen sripting language. The Clayer ontains low-level wrappers whereas the sript ode is used to de�ne high-levelfeatures. Considerably more �exibility is obtained by generating ode in both languagesas an extension module an be enhaned with support ode in either language. Table 1gives an overview of the resulting ode. As expeted, low-level software omponentsemphasize low-level languages and have more lines of ode (e.g. C), whereas, high-levelsoftware omponents emphasize high-level languages and have fewer lines of ode (e.g.Python, Perl).Language: C (H) C (G) Perl (H) Perl (G) Python (H) Python (G)Model Container 1,832,580 4,416,163 30,406 207,638 14,568 250,178Heer 1,163,991 1,575,615 57,565 107,261 1,586 171,219NS-SLI 1,448,636 483,641 4,603 2,802 � �SSP 829 2,323 55,063 � � �Studio � � 174,923 � � �G-Shell � � 28,142 � 623 836Table 1: Languages Used: Comparison of hand-written (H) and generated (G) odeharater ounts. 8



3 Results3.1 A Python Enabled Neural SimulatorBoth Python and Perl use modules to group related funtions together. The G-3 sript-ing bindings use modules to separate interfaes for simple models with many defaultsettings (e.g. to start a new researh projet) from more ompliated interfaes thatexpose the full funtionality of the simulator.As an example the Python Neurospaes.SingleCellContainer module ontains fun-tions to simplify the storage of single neuron models in omputer memory. This moduleis a simpli�ed front-end to the more ompliated Neurospaes module. Neurospaesinterfaes with the ModelContainer whih is oded in an e�ient system program-ming language. Likewise, Heer.SimpleHeer is a wrapper module around the Heeromponent whih in turn is an interfae to the low-level single neuron solver. Otheromponents are under onstrution to failitate network modeling.Here we show a simple high-level Python sript 2 that runs a simulation of a singleylindrial segment de�ned by standard values for the parameters of membrane and axialresistane and membrane apaitane (RM, RA, and CM, respetively). These parametersare given by their spei� values as ommonly reported in the literature, instead oftheir atual values saled to the ompartment surfae area as used by a mathematialsolver [Cornelis and De Shutter, 2004℄. The following sript de�nes a Python funtionrun_simulation and runs it when invoked from a shell ommand line. The sript analso be imported as a Python module, thus allowing aess to the funtion. We all thisPython module example.#!/usr/bin/python1 # load the SingleCellContainer library2 import sys3 sys.path.append('/usr/loal/glue/swig/python')4 import Neurospaes.SingleCellContainer56 # A funtion to run a simulation of a single ylindrial segment.78 def run_simulation(simulationtime):910 # reate a ell for simulation11  = Neurospaes.SingleCellContainer.Cell("/ell");1213 # reate a ylindrial segment inside the ell, and set its properties14 s = Neurospaes.SingleCellContainer.Segment("/ell/soma");1516 s.parameter("Vm_init", -0.0680)17 s.parameter("RM", 1.000)18 s.parameter("RA", 2.50)19 s.parameter("CM", 0.0164)20 2The given ode is written for larity of the paper rather than for ompatness or e�ieny withrelation to the sripting language used. 9



s.parameter("ELEAK", -0.0800)2122 s.parameter("DIA", 2e-05)23 s.parameter("LENGTH", 4.47e-05)2425 # first example: apply urrent injetion to the soma26 s.parameter("INJECT", 1e-9)2728 # seond example: use a wildard to ativate endogenous synapses29 Neurospaes.SingleCellContainer.query("setparameter spine::/Purk_spine/head/par 25")30 Neurospaes.SingleCellContainer.query("setparameter thikd::gaba::/Purk_GABA 1")3132 # rediret output to the given file33 Neurospaes.SingleCellContainer.set_output_filename("/tmp/output")3435 # ompile the model36 Neurospaes.SingleCellContainer.ompile("/ell")3738 # define the output variables39 Neurospaes.SingleCellContainer.output("/ell/soma", "Vm")4041 # run the simulation42 Neurospaes.SingleCellContainer.run(simulationtime)4344 # The main program exeutes a simulation of 0.5 seonds.45 # The if statement allows this file to used as an exeutable sript and as a library.4647 if __name__ == '__main__':48 run_sumulation(0.5)49 Due to the CBI federated software arhiteture, the G-3 platform provides manyuser interfaes. As an example, the ompartmental solver Heer an be driven stand-alone from C ode, from Python, or from Perl to run the simplest models, or it anbe integrated with theModelContainer for running more realisti multiompartmentmodels based on morphologial data. To illustrate this �exibility we now ompare theabove Python sript with alternative implementations in C and the G-2 SLI.In the C ode there is an abundane of low level detail that interfaes diretly tothe solver. For example ompartments are identi�ed by their position in an array, andparameters suh as RM and CM must be provided as an ordered sequene of their atualvalues (saled to the ompartment surfae area).The omplexity of the G-2 SLI interfae falls between that of the Python and Perlinterfaes, and the C ode interfae. While ompartments and parameters have names,numerial values are given in a format used by solvers.
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C Code Implementation GENESIS 2 SLI Implementation#inlude "heer/ompartment.h"strut Compartment ompSoma ={// type of struture reate neutral /ell{ MATH_TYPE_Compartment, }, reate ompartment /ell/somaset�eld /ell/soma dia 2e-05-1, // no parent ompartment set�eld /ell/soma len 4.47e-054.57537e-11, // Cm set�eld /ell/soma Cm 4.60608e-11-0.08, // Em set�eld /ell/soma Em -0.0800-0.068, // InitVm set�eld /ell/soma Vm_init -0.0681e-9, // Injet 360502, // Ra set�eld /ell/soma Ra 3557113.58441e+08, // Rm set�eld /ell/soma Rm 3.56051e+08}; set�eld /ell/soma injet 1e-9// ompartment and hannel mappingint piC2m[℄ = 0, -1, ;// model de�nitionstrut Intermediary inte r ={ 1, &ompSoma, NULL, piC2m, };// main simulation sript#inlude "main." resetstep 0.5 -timeWhile Python and Perl bindings are suitable for onstrution of toy models fromsrath, it is better to use a domain spei� language to onstrut the various partsof a model. For example, the ModelContainer is installed with a library of domainspei� model omponents where the standard Hodgkin-Huxley hannels are providedin the �le hannels/hodgkin-huxley.ndf. These hannels an be inluded in the examplegiven above by adding the Python statements:s.import_hild("hannels/hodgkin-huxley.ndf::/k")s.import_hild("hannels/hodgkin-huxley.ndf::/na")The ModelContainer an export models onstruted in Perl, Python or othersripting languages as a library for inorporation into new models or for use with othertools suh as the ProjetBrowser. These new models an then be imported by a allto the Neurospaes read method. For example, importing a Purkinje ell model withover 4000 ompartments may be done with the following statement:Neurospaes.SingleCellContainer.read("ells/purkinje/edsjb1994.ndf")11



After importation the ModelContainer provides a set of funtions to analyze thestruture of the model morphology. For example, the names of the most distal segmentof eah dendrite an be obtained with:Neurospaes.SingleCellContainer.query("segmentertips /Purkinje")3.2 Interative Query and SimulationThe G-Shell is a G-3 software omponent that integrates other software omponentsand makes their funtions available through an interative environment. Coded in Perl,the G-Shell is a ommuniation abstration layer for other software omponents suhas the ModelContainer, Heer, SSP and the Studio. After the G-Shell has beenstarted from a system shell withgenesis-g3the list of loaded software omponents is printed to the sreen after issuing theommand:list omponentsEah loaded software omponent will be shown with assoiated status informationhelping in the diagnosis of possible problems. For example after orret initialization ofthe ModelContainer its status information should appear as:model-ontainer:desription: internal storage for neuronal modelsintegrator: Neurospaes::Integrators::Commandsmodule: Neurospaesstatus: loadedtype:desription: intermediarylayer: 2Integration of the G-Shell with theModelContainer allows for real-time analysisof the quantitative and strutural aspets of a neuronal morphology. The library ofmodel omponents that is installed with the ModelContainer provides a de�nition ofa model Purkinje ell in the �le ells/purkinje/edsjb1994.ndf. The ommand:ndf_load ells/purkinje/edsjb1994.ndfwill make the model Purkinje ell available for interative analysis. Alternatively, ifthe model is enoded in a GENESIS 2 SLI sript with name PurkM9_model/CURRENT9.gthe ommand ndf_load an be replaed with sli_load:sli_load PurkM9_model/CURRENT9.g 12



This ommand imports the model that is spei�ed in the SLI sript without runningthe simulation. A similar ommand (pynn_load) is in development to interfae with thePyNN network modeling environment [Davison et al., 2008℄.Given the name of one of its dendriti segments, the number of branh points betweenthat segment and the soma an be determined. After indiating whih paths of thedendriti tree must be examined, the parameter SOMATOPETAL_BRANCHPOINTS ontainsthe result, whih an be obtained with:morphology_summarize /Purkinjeshow_parameter /Purkinje/segments/b1s06[182℄ SOMATOPETAL_BRANCHPOINTSAfter �nding a suitable dendriti segment, its synapti hannel an be stimulatedwith a preomputed spike train that is stored in a �le with, for example, the �lenameevent_data/events.yml:set_runtime_parameter /Purkinje/segments/b1s06[182℄/Purkinje_spine_0/head/par/synapseEVENT_FILENAME ``event_data/events.yml''Finally, following the addition of an output omprising the somati membrane po-tential, a simulation an onveniently be started using:add_output /Purkinje/segments/soma Vmrun /Purkinje 0.1This outputs the somati response to the stimulus in a �le named by default as/tmp/output.To query the parameters of the stimulated ompartment the model an then beanalyzed using the graphial front-end of the Studio with the ommand:exploreFigure 2 shows sample output of running this ommand. Other apabilities of theStudio inlude rendering morphologies in three dimensions and generating overviews ofnetwork models (not shown). In the next setion we explore more graphial apabilitiesof G-3.3.3 Gluing Pre-existing Appliations & LibrariesIn the past, the graphial interfae to G-2 was provided by the X-Window SystemOutput and Display Utility for Simulations (XODUS). The XODUS interfae madegraphial objets available that ould be onneted to model omponents from withinthe SLI. Rather than providing a full GUI instane, the �exibility of XODUS ame fromits infrastruture whih allowed modelers to easily develop new GUIs dediated to theirresearh and teahing projets 3. However, the XODUS paradigm inevitably allowedmodelers to ontaminate their model sript with GUI related statements.3The o�ial G-2 software distribution ontains both simple and sophistiated example GUIs.13



Figure 2: Using the Studio to query a model and its parameters.As mentioned above, one advantage of the CBI federated software arhiteture isthat it de�nes how to interfae simulator omponents with external appliations. Anobvious example is the use of existing 3D graphis software to examine and edit thespatial properties of a model neuron morphology. Others inlude, integration withexternal graphing and windowing software to plot the values of solved variables againstsimulation time, or to allow the onstrution of button-rih tutorial appliations.GUI libraries typially ommuniate with other software omponents using an eventbased system. The funtional ore of this system is an event dispathing loop, usuallyalled the main loop. The binding between button lik event and the main loop, and thevisual layout of most ontemporary GUI appliations is onveniently onstruted usingone of a number of available user interfae builders. wxFormBuilder 4 is suh an interfaebuilder whih allows a user to onstrut a GUI with visual elements suh as menus andbuttons, and write a desription of the elements and their bindings to a �le known asan XML resoure (XRC) �le. The GUI de�nitions in this �le an then be renderedwith the freely available wxWidgets library and its Python front end wxPython. Furtherintegration with additional G-3 spei� data bindings ensures that, for example, the dataprodued by a mathematial solver �ows to a widget that plots the value of a variableagainst time. This funtionality replaes the G-2 XODUS paradigm, that required SLIsripting to onnet GUI omponents to model omponents and simulation ations, witha more ontemporary paradigm that separates simulator and model sripts from GUI4A user interfae designer for the wxPython toolkit and the Linux desktop environment GNOME,available from http://wxformbuilder.org/. 14



related statements.In the following example we reate a wxPython appliation lass alled G3App. Thisdemonstrates the Python sripting required to onnet the software omponents thatreate a small GUI for G-3. We spei�ally show how to initialize the appliation (im-plementation of method OnInit), how to run a simple simulation based on the previousexample (method OnRun), and how to plot output (method Plot). For this, it is as-sumed that a XRC �le with the name G3.xr an be found that desribes a GUI withone frame (here, mainFrame) whih allows the simulation duration to be set via a textontrol and ontains a button to start the simulation.The �rst lines of ode in the sript load the neessary Python modules whih thenload low-level libraries oded in a system programming language. The importation ofexample makes the previously de�ned funtion run_simulation available. The DataPlotlass is a speialized lass to read in GENESIS data output and load it into a wxPythonplot widget. The import of wx referenes a system wide install of wxPython and makesthe GUI funtions of wxWidgets available to our sript.import DataPlot1 import example2 import wx3 from wx import xr4 To ensure orret system initialization via the method OnInit, our G3App lass isdelared to inherit the funtions of the wx.App lass.lass G3App(wx.App):56 def OnInit(self):7 After orret system initialization, appliation spei� initialization an start. In-side the OnInit method we �rst load the XML resoure �le previously reated usingwxFormBuilder.self.res = xr.XmlResoure('G3.xr')8 The GUI elements are then retrieved from the XRC spei�ation and made availableas Python objets. Eah delared element an be retrieved via its name:self.frame = self.res.LoadFrame(None, 'mainFrame')9 self.durationTextCtrl = xr.XRCCTRL(self.frame,'durationTextCtrl')10 self.runButton = xr.XRCCTRL(self.frame, 'runButton')11 After retrieving the run button, we bind it to the method OnRun (given below).This translates the GUI event generated when the run button is liked to an ationthat invokes the OnRun method.self.frame.Bind(wx.EVT_BUTTON, self.OnRun, self.runButton)12 15



The OnRun method reads a numerial value for the the simulation time from a textontrol widget (durationTextCtrl) and stores it in a variable. This variable is then passedto the funtion run_simulation. After the simulation is omplete a all to a Plot methodis made. This displays the generated data in a wxPython plot widget.def OnRun(self,evt):1314 simulation_time = float(self.durationTextCtrl.GetValue())15 example.run_simulation(simulation_time)16 self.Plot('/tmp/output')17 The Plot method uses the DataPlot lass to display G-3 data output with a wxPythonplot widget. The DataPlot widget is part of the libraries of the G-Tube, a Python GUIunder development for G-3.def Plot(self,datafile):1819 plotwindow = wx.Frame(self.frame, -1, "Graph display", (480,300))20 plotpanel = wx.Panel(plotwindow, -1)2122 self.dataplot = DataPlot.DataPlot(plotpanel, -1,23 '/tmp/output',24 'Example Plot',25 'Time (Seonds)',26 'Membrane Potential (Volts)')2728 vbox_sizer = wx.BoxSizer(wx.VERTICAL)29 vbox_sizer.Add(self.dataplot, 1, wx.EXPAND)30 plotpanel.SetAutoLayout(True)31 plotpanel.SetSizer(vbox_sizer)32 plotpanel.Layout()33 plotwindow.Show()34 The ode of the GUI appliation (G3App) is terminated with a all to the main eventloop of wxPython.if __name__ == '__main__':35 app = G3App(False)36 app.MainLoop()37 In this example we have shown how the CBI arhiteture de�nes a separation be-tween GUI statements and peripheral ode suh as input and output spei�ations, andmodel onstrution. Besides allowing ommon GUI onstrution kits to be used for thedevelopment of researh and eduational projets, the approah also allows interfaingto more speialized GUI kits. This is illustrated with the following example.
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3.4 Interfaing GENESIS with BlenderBlender (http://www.blender.org/) is a free open soure 3D ontent reation suite avail-able for all major operating systems that have Python enabled bindings. The Pythonenvironment of Blender has the restrition that the ode must be run from inside theBlender spei� Python interpreter. In doing this, Blender replaes the funtionalityotherwise provided by the G-Shell. It allows the state-of-the-art rendering funtions ofBlender to be used to validate and analyze models of the morphology of small dendritisegments obtained from eletron mirosopy data.Over the last several years eletron mirosopy (EM) in onjuntion with Reon-strut [Fiala, 2005℄ has been used to obtain preise morphologies of small segments ofPurkinje ell dendrites [Huo et al., 2009, Cornelis et al., 2007℄.

Figure 3: Blender image of Purkinje neuron dendriti segment.The Reonstrut interfae onverts the Reonstrut appliation into a G-3 simulatoromponent by making it CBI ompliant. This allows Reonstrut data to be importedinto the ModelContainer. The ore of the interfae implements geometrial trans-formation algorithms that onvert EM ontours provided by Reonstrut to equivalentylinders suitable for able modeling. The geometrial properties of the ylinders arestored in the native G-3 �le format and algorithms provided by the ModelContainerlink them with the able parameters required by the mathematial solvers. A simulationan then be run with the read and run methods given above.The neessary onversion algorithms are aessible from the ModelContainer viaPython. The Python interfae of Blender links it to the G-3 simulator, suh that Blenderis the �rst G-3 3D model inspetion tool for EM data. As an example, the Python sriptdeveloped above an be run from within the Blender environment. Also, via the samePython interfae, simulations an be started based on the 3D image data.17



Interative visualization of reonstruted dendriti segments is a valuable method ofmodel validation and is available with the interfae of G-3 with Blender (see Figure 3).However, the development of small foused plugins allows for more than just thesefuntions. For example, 3D measurement and manipulation of neuron morphology,omputation of surfae areas and volumes, and the generation of 3D rossetions and2D uts also beomes possible.4 DisussionThe Python and Perl bindings of the G-3 simulator embed similar onepts to the G-2SLI, although their purpose is di�erent. While the SLI had as major goals the integrationof model omponents, running simulations, and output olletion, the primary goal ofsripting languages suh as Perl and Python has beome appliation integration.Software libraries an either provide general support or an be tailored for spei�sienti� disiplines. Through the Neurospaes projet, GENESIS now provides a seriesof independent software omponents that an be ombined to support omputationalmodeling in the neurosienes. Sripting languages suh as Python and Perl then providepowerful integration tools to onnet these software omponents to general purposelibraries for GUI appliation development, result visualization and data analysis.4.1 From Monolithi Software Appliations to Modular Frame-worksThe development of the GENESIS simulator was initiated during the eighties through re-searh projets that addressed spei� sienti� questions in omputational neurosiene.Software development was then ontinued with a life yle of researh projet extensions.For example the libraries for kineti pathway modeling were added for projets investi-gating how signalling networks store learned behaviour [Bhalla and Iyengar, 1999℄ andhow light regulates release from intraellular alium stores for photoreeption [Blakwell, 2000℄.The fast impliit solver was developed with the spei� fous of omplex Purkinje ellmodeling [De Shutter and Bower, 1994a, De Shutter and Bower, 1994b℄ and more re-ently synapti learning rules have been implemented [Günay et al., 2008℄. In priniplesuh linear or single-threaded development proesses an ontinue forever. However,repetitive extension of the GENESIS simulator with soure ode of diverse funtionsand origin ultimately made the ode struture so ompliated that it beame di�ult,if not impossible, to extend. Beause of the density of the G-2 soure ode the appli-ation beame beome 'monolithi' and user ontributions to simulation funtionalitywere minimalized.In the paradigm of the CBI federated software arhiteture, model parameters arestored and proessed separately from stimulus protools and the way simulations arerun. This greatly failitates the development and maintenane of individual softwareomponents for G-3. As examples of the added funtionality this approah allows, we18



have shown the ability of the ModelContainer to query the struture of a neuronalmorphology, and how to run a simple model using Heer. The CBI federated softwarearhiteture also de�nes lear boundaries for integration using existing sripting teh-nology. For example, an interative simulation of a Purkinje ell model after unitarysynapti stimulation an be onneted to a prede�ned spike train stored in a �le. Inthis way software improvements an be ahieved using parallel software developmentproesses for stand-alone software omponents rather than the more linear ones typialof entrally developed monolithi software appliations.4.2 Extensibility in The G-3 Software FederationAn important bene�t of the CBI federated software arhiteture is that third partysoftware libraries beome available for users. For example, wxFormBuilder an be used togenerate GUI bindings for wxPython and integrate them with the G-3 software platform.To demonstrate the additional power of our approah, we have interfaed G-3 withReonstrut and Blender. This novel software platform has been used for visual inspe-tion and validation of reonstruted dendrites by onneting a model to the geometrialand analytial tools provided by the Blender plugin library. Further, we note that itis also possible to use Blender to instantiate neural simulations and, for example, toollet simulation output data for movie generation. We now give an overview of ourongoing e�orts to interfae the G-3 simulator with external libraries and appliations.Complementary funtionality to that provided by interfaing G-3 with Blender wouldbe available after interfaing G-3 with neuroConstrut (http://www.neuroonstrut.org/),a software pakage designed to simplify the development of omplex networks of bio-logially realisti neurons [Gleeson, 2005, Gleeson et al., 2007℄. Implemented in Java,neuroConstrut uses the latest NeuroML spei�ations (see http://www.neuroml.org/,http://www.morphml.org/), an be used to visually validate network layout and de-sign [Crook et al., 2007℄, and an be onneted to Python appliations (e.g. see http://www.jython.org/).In priniple this allows it to be integrated with other simulators that have Python bind-ings, inluding NEURON, NEST, and G-3.A serial ommuniation framework for event delivery of ation potentials to post-synapti targets has been developed. Called the Disrete Event System (DES), thissoftware omponent is integrated with the mathematial solvers of G-3 using eitherPerl or Python. Beause it is optimized for ommuniation over serial hardware, DESan be extended to support ommuniation frameworks for parallel hardware suh asthose provided by the MOOSE simulator [Ray and Bhalla, 2008℄ and the MUSIC frame-work [Djurfeldt et al., 2010℄.The NeuroMorpho.Org database of neuronal morphologies (http://www.neuromorpho.org/)is a entrally urated inventory of digitally reonstruted neurons [Asoli, 2006℄. Thedigital reonstrution of neuronal arborization is an important step in the quantitativeinvestigation of ellular neuroanatomy. Allowing extensive morphometri analysis, it isthe �rst step in the implementation of biophysial models of eletrophysiology. Diretinterfaing with the funtionality of theModelContainer aelerates the development19



of neuronal models by providing a diret link to data from experiments. Preliminaryimplementations of this funtionality are now part of an automated test framework forG-3.G-3 also signi�antly extends the ability of GENESIS to diretly interat with exper-imental tehnologies suh as open soure dynami lamp software. As an example, themodular approah taken by the RTXI platform for dynami lamp [Bettenourt et al., 2008,Dorval et al., 2001℄ and the modular struture of G-3 mean that the solver, Heer, anbe diretly integrated as an RTXI plug-in [Cornelis and Coop, 2010℄. This greatly sim-pli�es the required software development.Ultimately, the extensibility of the CBI federated software arhiteture provides anextremely plasti environment within whih independent omponents an be integratedwith a sripting language of hoie.4.3 Impliations for Neuronal Simulator InteroperabilityThe urrent generation of neural simulators an be haraterized as software appliationsthat support a user work�ow extending from model onstrution to data analysis. Manyof these simulators support Python bindings beause of their ease of use [Peevski et al., 2009℄and simpliity [Goodman and Brette, 2008℄. They range from Monte-Carlo simulatorsfor reation-di�usion systems [Wils and Shutter, 2009℄ and dediated large network sim-ulators [Eppler et al., 2008℄ to the general purpose NEURON and GENESIS 2 simula-tors [Hines et al., 2009, Bower and Beeman, 1998℄.For these simulators interoperability is more easily implemented using one of theemerging standards for model exhange suh as NeuroML [Goddard et al., 2001℄, NineML [Gortehnikov and the INCF NineML Task Fore, 2010℄and PyNN [Davison et al., 2008℄. While dediated G-3 modules supporting the use ofthese interoperability standards are urrently under development, the G-3 platform nowalso provides an alternative approah that uses sripting to onnet neurosiene spe-i� software to general purpose software and integrate it into a next generation neuralsimulator.4.4 Federated Software Development in NeurosieneProesses of software development have traditionally been desribed as either athedral-style where there is a losed developer group under entral diretion and software re-leases are infrequent, or, alternatively, bazaar-style where the software is developed byvolunteers and software releases our early and often [Raymond, 2001, Brooks, 1995℄.While athederal-style software development leads to a single-threaded development y-le ommonly used by ommerial appliations, the bazaar-style leads to multi-threadeddevelopment yles of appliations that ome in di�erent �avours 5.Here, based on the CBI paradigm, we have outlined a solution for multi-threadeddevelopment of software omponents for neurosiene (for other examples of this ap-5A typial example is the family of editors based on Emas.20
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