
Federated S
ripting in the GENESIS 3.0Neural Simulation PlatformCornelis H., Rodriguez A. L., Coop A. D. and Bower J. M.University of Texas Health S
ien
e Center at San Antonio.September 7, 2010

1



Abstra
tThe GENESIS (GEneral NEural SImulation System, http://genesis-sim.org/) simula-tion platform was one of the �rst broad-s
ale modeling systems in 
omputational bi-ology to en
ourage modelers to develop and share model features and 
omponents.Supported by a large developer 
ommunity the GENESIS simulator parti
ipated ininnovative simulator te
hnologies su
h as ben
hmarking [Bhalla et al., 1992℄, paralleliza-tion [Goddard and Hood, 1998℄ and de
larative model spe
i�
ation [Goddard et al., 2001℄and it was the �rst neural simulator to de�ne binding for the Python s
ripting lan-guage [Vanier, 1997℄.An important feature of the latest version of GENESIS, GENESIS 3.0 (G-3), is that itde
omposes into self-
ontained software 
omponents, that 
onform to the CBI simulatorar
hite
ture [Cornelis et al., 2008℄. This federated ar
hite
ture allows separate s
riptingbindings to be de�ned for the mathemati
al solvers and the GUI, as well as for otherne
essary simulator 
omponents.Python and Perl are s
ripting languages that provide ri
h sets of freely availableopen sour
e libraries [Langtangen, 2004, Valiente, 2009℄. With a 
lean dynami
 obje
t-oriented design produ
ing highly readable 
ode, Python and Perl are widely employed inspe
ialized areas of software 
omponent integration [Thiruvathukal et al., 2001, Lee and Ware, 2007℄.SWIG (Simpli�ed Wrapper and Interfa
e Generator [08:, 2008℄) examines an appli
ationprogramming interfa
e (API) and makes it available to a s
ripting language of 
hoi
e.This way the software 
omponents of the G-3 simulator 
an be glued together, instan-tiated and 
onne
ted to external libraries and appli
ations from user-de�ned s
ripts ineither Python or Perl.We illustrate this approa
h with examples using Python s
ripting. The �rst exampleuses a mathemati
al solver as a stand-alone software 
omponent driven from a Pythons
ript that generates and runs a simple single 
ompartment model neuron. This s
ript isthen 
ontrasted with C 
ode and GENESIS 2 (G-2) implementations that 
onne
t to thesame mathemati
al solver. The se
ond example interfa
es the mathemati
al solver to amodeling environment for the exploration of a neuron morphology from an intera
tive
ommand-line and a graphi
al shell. The third example applies s
ripting bindings to
onne
t the G-3 simulator to external graphi
al libraries and an open sour
e 3D 
ontent
reation suite. This allows us to visualize 3D models based on ele
tron mi
ros
opy and
onvert them to 
omputational models [Cornelis et al., 2007℄.Employed this way the stand-alone software 
omponents of the G-3 simulator providea framework for progressive federated development in the 
omputational neuros
ien
es.1 Introdu
tionGENESIS is a general purpose simulation platform that was originally developed tosupport the simulation of neural systems ranging from sub
ellular 
omponents andbio
hemi
al rea
tions to 
omplex models of single neurons, simulations of large net-works, and systems-level models. The software development of the GENESIS sim-2



ulator was initiated during the 1980's through resear
h proje
ts that addressed spe-
i�
 s
ienti�
 questions in 
omputational neuros
ien
e and was then logi
ally 
ontin-ued with a life 
y
le of resear
h proje
t extensions. For example the libraries forkineti
 pathway modeling were added for proje
ts investigating how signalling net-works store learned behaviour [Bhalla and Iyengar, 1999℄ and how light regulates re-lease from intra
ellular 
al
ium stores for photore
eption [Bla
kwell, 2000℄. The fastimpli
it solver was developed with the spe
i�
 fo
us of 
omplex Purkinje 
ell model-ing [De S
hutter and Bower, 1994a, De S
hutter and Bower, 1994b℄ and more re
entlysynapti
 learning rules have been implemented [Günay et al., 2008℄. In prin
iple su
hlinear or single-threaded development pro
esses 
an 
ontinue forever. However, repet-itive extension of the GENESIS simulator with sour
e 
ode of diverse fun
tions andorigin ultimately made the 
ode stru
ture so 
ompli
ated that it be
ame in
reasinglydi�
ult, if not impossible, to extend. Be
ause of the density of the GENESIS 2 (G-2)sour
e 
ode the appli
ation be
ame `monolithi
' while user 
ontributions to simulationfun
tionality were marginalized. Ultimately, releases and updates be
ame less frequentand the software life 
y
le moved from extension to maintenan
e.GENESIS 3 (G-3) is a major revision and update of the GENESIS simulation system.The 
ore simulator fun
tionality has been restru
tured, with a more modern modulardesign (the CBI federated software ar
hite
ture, des
ribed below). This not only resultsin improved simulator performan
e and portability, but also allows the use of new s
riptparsers and user interfa
es, as well as the ability to 
ommuni
ate with other modelingprograms and environments. The CBI federated software ar
hite
ture is spe
i�
allydesigned to support the integration of stand-alone software 
omponents and appli
ationsby using 
ommon integration te
hnologies su
h as modern s
ripting languages.2 Methods & SoftwareStarting from the existing sour
e 
ode base, and taking lessons from the past, G-3 is amodularization of the 
ore fun
tions of the G-2 simulator. The guiding prin
iple for thede�nition of the 
ore fun
tions of the G-3 simulator is what is referred to as the CBIfederated software ar
hite
ture, a modular abstra
ted ar
hite
ture that layers the datain a simulator and separates the data representations from the algorithms to pro
essthem. This is des
ribed in more detail in the next se
tions.2.1 GENESIS 2GENESIS is a general purpose simulation platform that was developed to support thesimulation of neural systems ranging from sub
ellular 
omponents and bio
hemi
al re-a
tions to 
omplex models of single neurons, simulations of large networks, and systems-level models. It was the �rst broad s
ale modeling system in 
omputational biology toen
ourage modelers to develop and share model features and 
omponents. For thesepeople, it was the obje
t-oriented approa
h taken by the simulator along with its high-3



level simulation language that allowed the ex
hange, modi�
ation, and reuse of modelsor model 
omponents.GENESIS simulations are 
onstru
ted from model 
omponents that re
eive inputs,perform 
al
ulations on them, and then generate outputs. Model neurons are 
on-stru
ted from basi
 parts, su
h as 
ompartments, and variable 
ondu
tan
e ion 
han-nels. Channels are linked to their 
ompartments whi
h are then linked together to formmulti-
ompartmental neurons of any desired level of 
omplexity. Neurons may be 
on-ne
ted together to form neural 
ir
uits. It is the paradigm used by the GENESIS 2 s
riptlanguage interpreter (SLI), the 
ommands whi
h it re
ognizes, and the main GENESIS`obje
ts' available for 
onstru
ting simulations that have most powerfully assisted in thesharing of model features amongst the broader modeling 
ommunity.A high-level simulation language, the GENESIS SLI 1, provided a framework withinwhi
h a modeler 
ould easily extend the 
apabilities of the simulator and manipulatemodels or model 
omponents by ex
hange, modi�
ation, and reuse. The SLI interpretsstatements in the GENESIS simulation language, and 
onstitutes the operating system`shell'. User-de�ned SLI s
ripts were used to glue the pie
es of a simulation together.The graphi
al obje
ts used to de�ne the front end of a simulation and GENESIS datahandlers were all 
ontrolled from SLI s
ripts.Developed by Mi
hael Vanier in the late 1990's, PyGENESIS was a version of GEN-ESIS that repla
ed the standard GENESIS SLI with a Python interfa
e [Vanier, 1997℄.Leveraging the power and 
lear syntax of the Python s
ripting language PyGENESISin prin
iple also 
ould easily be bound to external Python libraries and appli
ations.It was nevertheless never publi
ly released due to the then immaturity of Python as as
ripting language. However with the 
urrent sophisti
ation of the Python platform anddevelopment of G-3 as a federated software ar
hite
ture, Python has be
ome a powerfulintegration tool for GENESIS as des
ribed below.2.2 S
ripting LanguagesHistori
ally, there have been fundamental di�eren
es between the Unix shells and systemprogramming languages su
h as C or C++ and s
ripting languages su
h as Perl [Wall, 1999℄,Python [Martelli, 2006℄, Rexx [O'Hara and Gomberg, 1988℄, T
l [Ousterhout, 1994℄, andVisual Basi
. System programming languages start from the most primitive 
omputerelements, usually the `words' of memory. They are designed to manage the 
omplexityof building data stru
tures and algorithms from s
rat
h and usually require pre-de
lareddata types. Alternatively, s
ripting languages as a repla
ement for shell s
ripts and shell
ommuni
ation pipes are designed for `gluing': they assume the existen
e of a set of pow-erful 
omponents and are intended primarily for 
onne
ting 
omponents together. In thisway, s
ripting languages operate at a higher level than system programming languagesin the sense that on average a single statement does more work. For example, a typi
alstatement in a system programming language exe
utes about �ve ma
hine instru
tions,1Note: The GENESIS SLI interfa
e is the standard s
ripting language of GENESIS 2. It is alsosupported by G-3 with the ba
kward 
ompatibility 
omponent NS-SLI.4



whereas in a s
ripting language hundreds or thousands of ma
hine instru
tions may beexe
uted [Ousterhout, 1998℄.The strongly typed nature of system programming languages dis
ourages reuse.S
ripting languages, on the other hand, have a
tually stimulated signi�
ant softwarereuse. They use a model where interesting 
omponents are built in a system program-ming language and then glued together into appli
ations using a s
ripting language.This division of labor provides a natural framework for reusability. Components aredesigned to be reusable, and there are well-de�ned interfa
es between 
omponents ands
ripts that make them easy to use. In this sense s
ripting and system programmingare symbioti
. Used together, they produ
e programming environments of ex
eptionalpower: system programming languages are used to 
reate fun
tional 
omponents whi
hare then assembled using s
ripting languages.In summary, system programming languages are well suited to building 
omponentswhere the 
omplexity is in the data stru
tures and algorithms, while s
ripting languagesare well suited for integrating appli
ations where the 
omplexity is in the 
onne
tions.With an in
reasing requirement for software integration, s
ripting is providing an im-portant programming paradigm.2.3 The CBI Federated Software Ar
hite
tureThe CBI (Computational Biology Initiative) federated software ar
hite
ture providesa modular paradigm that pla
es stand-alone software 
omponents into logi
al relation-ships. Ea
h software module is an independent and standalone 
omponent su
h thatdevelopment and maintenan
e 
an be implemented 
on
urrently.

Figure 1: Relation of 
omponents in the CBI ar
hite
ture.The 
ore 
omponents of the ar
hite
ture are shown in Figure 1. On the bottom left5



are databases of neuronal models or experimental data that 
an be a

essed by the simu-lator. Optional model pro
essors (e.g. the Re
onstru
t interfa
e, http://synapses.
lm.utexas.edu/tools/re
onstru
t/re
onstru
t.stm)load a model into the ModelContainer. The ModelContainer stores a model inmemory and makes it available to other software 
omponents in di�erent formats. Onefun
tion of the ModelContainer is to translate biologi
al 
on
epts and propertiesinto mathemati
al 
on
epts that 
an be understood by the mathemati
al solvers. Thus,importantly and unlike other existing neural simulators, the mathemati
al solvers areindependent of the biologi
al representation of a model. A simulation 
ontroller or
hes-trates and syn
hronizes the a
tions taken by the ModelContainer (e.g. when to loada model, the de�nition of the stimulus, and when to export a model) and mathemat-i
al solvers (when to fet
h the model from the ModelContainer, when to start the
al
ulations, and what the output variables are).A s
ripting layer allows the simulation system to be driven from multiple s
riptinglanguages. Python and Perl are 
urrently supported, as is (for ba
kward 
ompatibility)the GENESIS SLI. The G-3 Graphi
 User Interfa
e or GUI (G-Tube), shown at thetop of Figure 1, is entirely being developed in Python. It allows models to be importedfrom databases or 
onstru
ted from s
rat
h, the exploration of model stru
ture andparameters, and the visualization of variables and model behavior.Within the CBI paradigm ea
h software 
omponent is self 
ontained and 
an be runindependently. This fa
ilitates the interoperability of software obtained from di�erentsour
es and has several important advantages for software development, in
luding: (1)Redu
ed 
omplexity of software 
omponents 
ompared to a unitary system, (2) simpli-�ed do
umentation of 
omponents in terms of inputs and outputs, (3) as a 
onsequen
esimpli�ed development and testing of 
omponents as stand alone 
omponents, (4) 
leardelineation of s
ope for the development of new 
omponents, and (5) individual 
ompo-nents 
an be independently updated, enhan
ed, or repla
ed when needed, making thelife 
y
le of a modular ar
hite
ture smoother than that of a non-s
alable appli
ation.The CBI federated software ar
hite
ture provides a framework for the integration ofindependent software 
omponents into a fun
tioning simulator using a s
ripting languageof 
hoi
e. Here we spe
i�
ally illustrate the use of Perl and Python for this purpose.2.4 G-3 as a CBI Compliant SimulatorMu
h existing software su
h as GUI libraries and plotting libraries, are appli
ation neu-tral. Other software pa
kages are tailored to the needs of 
omputational neuros
ien
e.The Neurospa
es proje
t (http://www.neurospa
es.org/) provides 
ore software 
om-ponents of the G-3 simulator [Cornelis and De S
hutter, 2003℄. These in
lude, (1) theModel Container: Stores two representations of a model, the �rst is 
on
eptual and
an be regarded as an enumeration of biologi
al 
on
epts and their relationships, these
ond is an expanded mathemati
al representation that, if 
omplete, 
an be simu-lated, (2) He

er: A fast 
ompartmental solver based on the GENESIS hsolve obje
tthat 
an be instantiated from C, Perl, Python or other s
ripting languages, (3) SSP(Simple S
heduler in Perl): Binds He

er and the ModelContainer, and a
tivates6



them 
orre
tly, su
h that they work together on a single simulation, (4) Studio andG-Tube: Contain graphi
al tools for model 
onstru
tion, exploration and simulation,(5) G-Shell (G-3 Intera
tive Shell): Dynami
ally loads other software 
omponents inan intera
tive environment, and the (6) Proje
tBrowser: For inspe
tion of proje
tsand simulation results. For 
ompleteness we also mention (7) NS-SLI: The G-3 
om-ponent that provides ba
kward 
ompatibility for the GENESIS 2 SLI. All software 
anbe downloaded from the GENESIS web site (http://genesis-sim.org/download/) andextensive installation instru
tions with examples are available from the GENESIS do
-umentation website (http://www.genesis-sim.org/userdo
s/genesis-installation/genesis-installation.html). Simulator 
orre
tness 
an be established by running automated re-gression and integration tests.2.5 PerlPerl was one of the �rst open sour
e s
ripting languages. First released in 1987 [http://groups.google.
om/group/
omp.sour
es.unix/msg/bb3ee125385ae25f?pli=1℄,it is unique in that it is very mu
h informed by linguisti
 prin
iples. Originally devel-oped as a s
ripting language for UNIX, it aimed to blend the ease of use of the UNIXshell with the power and �exibility of a system programming language like C. Withover 20 years of development and nearly half a million lines of 
ode, Perl now runs onover 100 di�erent platforms [ref: http://www.perl.org/about.html℄. Currently, there areover 18,000 open sour
e modules available from the Comprehensive Perl Ar
hive Net-work (CPAN), assisting in system integration, s
ienti�
 appli
ation, and user interfa
edevelopment. Via the CPAN Inline module, Perl integrates seemlessly with both systemprogramming languages su
h as C and C++, and s
ripting languages in
luding Python.Perl supports obje
t-oriented programming, fun
tional programming, and pro
eduralprogramming paradigms. Perl sour
e 
ode has been 
erti�ed to 
ontain 0.03 defe
tsper 1000 lines of 
ode [http://s
an.
overity.
om/rung2.html℄. In Mar
h 2010, 3.8% ofall lines of programming 
ode were written in Perl to make it the 8th most popularprogramming language [Tiobe Software, 2010℄.2.6 PythonPython is a powerful dynami
 programming language 
omparable to Perl, Ruby, orS
heme. In February 2010 more than 4.2% of all 
ode written was developed in Pythonto make it the 7th most popular programming language [Tiobe Software, 2010℄. It 
om-bines 
onsiderable power with very 
lear syntax and has modules, 
lasses, ex
eptions,and high level data types, in 
ombination with a dynami
 and loose typing. It runson many hardware ar
hite
tures, integrates with s
ienti�
 and user interfa
e libraries,and new modules are easily written in C or C++ (or other languages, depending onthe 
hosen implementation). It is also usable as an extension language for appli
ationswritten in other languages that need easy-to-use s
ripting or automation interfa
es.
7



2.7 Meta-Programming in Perl and PythonMeta-programming is a programming te
hnique where a program generates a new pro-gram and then exe
utes it. Appli
ation of this te
hnique for the G-3 Perl and Pythonbindings allows for the generation of an additional layer of s
ript 
ode that providesin
reased �exibility for the de�nition of models and simulations. A prede�ned Perl orPython data stru
ture de�nes high-level interfa
es and is translated into strings 
on-taining Perl or Python 
ode su
h as 
lass and method de�nitions. These, in turn, arethen bound to the run-time environment using the Perl or Python eval fun
tions duringprogram initialization.2.8 SWIG for Federated Software IntegrationSWIG was 
hosen to fa
ilitate the use of Perl and Python bindings in G-3. It is asoftware development tool that 
onne
ts programs written in C and C++ with high-level s
ripting languages. For the CBI federated software ar
hite
ture, it provides 
ontrolover most aspe
ts of wrapper generation and automates the generation of the requiredPerl and Python interfa
es. SWIG uses a layered approa
h to build extension moduleswhere di�erent parts are de�ned in either C or the 
hosen s
ripting language. The Clayer 
ontains low-level wrappers whereas the s
ript 
ode is used to de�ne high-levelfeatures. Considerably more �exibility is obtained by generating 
ode in both languagesas an extension module 
an be enhan
ed with support 
ode in either language. Table 1gives an overview of the resulting 
ode. As expe
ted, low-level software 
omponentsemphasize low-level languages and have more lines of 
ode (e.g. C), whereas, high-levelsoftware 
omponents emphasize high-level languages and have fewer lines of 
ode (e.g.Python, Perl).Language: C (H) C (G) Perl (H) Perl (G) Python (H) Python (G)Model Container 1,832,580 4,416,163 30,406 207,638 14,568 250,178He

er 1,163,991 1,575,615 57,565 107,261 1,586 171,219NS-SLI 1,448,636 483,641 4,603 2,802 � �SSP 829 2,323 55,063 � � �Studio � � 174,923 � � �G-Shell � � 28,142 � 623 836Table 1: Languages Used: Comparison of hand-written (H) and generated (G) 
ode
hara
ter 
ounts. 8



3 Results3.1 A Python Enabled Neural SimulatorBoth Python and Perl use modules to group related fun
tions together. The G-3 s
ript-ing bindings use modules to separate interfa
es for simple models with many defaultsettings (e.g. to start a new resear
h proje
t) from more 
ompli
ated interfa
es thatexpose the full fun
tionality of the simulator.As an example the Python Neurospa
es.SingleCellContainer module 
ontains fun
-tions to simplify the storage of single neuron models in 
omputer memory. This moduleis a simpli�ed front-end to the more 
ompli
ated Neurospa
es module. Neurospa
esinterfa
es with the ModelContainer whi
h is 
oded in an e�
ient system program-ming language. Likewise, He

er.SimpleHe

er is a wrapper module around the He

er
omponent whi
h in turn is an interfa
e to the low-level single neuron solver. Other
omponents are under 
onstru
tion to fa
ilitate network modeling.Here we show a simple high-level Python s
ript 2 that runs a simulation of a single
ylindri
al segment de�ned by standard values for the parameters of membrane and axialresistan
e and membrane 
apa
itan
e (RM, RA, and CM, respe
tively). These parametersare given by their spe
i�
 values as 
ommonly reported in the literature, instead oftheir a
tual values s
aled to the 
ompartment surfa
e area as used by a mathemati
alsolver [Cornelis and De S
hutter, 2004℄. The following s
ript de�nes a Python fun
tionrun_simulation and runs it when invoked from a shell 
ommand line. The s
ript 
analso be imported as a Python module, thus allowing a

ess to the fun
tion. We 
all thisPython module example.#!/usr/bin/python1 # load the SingleCellContainer library2 import sys3 sys.path.append('/usr/lo
al/glue/swig/python')4 import Neurospa
es.SingleCellContainer56 # A fun
tion to run a simulation of a single 
ylindri
al segment.78 def run_simulation(simulationtime):910 # 
reate a 
ell for simulation11 
 = Neurospa
es.SingleCellContainer.Cell("/
ell");1213 # 
reate a 
ylindri
al segment inside the 
ell, and set its properties14 s = Neurospa
es.SingleCellContainer.Segment("/
ell/soma");1516 s.parameter("Vm_init", -0.0680)17 s.parameter("RM", 1.000)18 s.parameter("RA", 2.50)19 s.parameter("CM", 0.0164)20 2The given 
ode is written for 
larity of the paper rather than for 
ompa
tness or e�
ien
y withrelation to the s
ripting language used. 9



s.parameter("ELEAK", -0.0800)2122 s.parameter("DIA", 2e-05)23 s.parameter("LENGTH", 4.47e-05)2425 # first example: apply 
urrent inje
tion to the soma26 s.parameter("INJECT", 1e-9)2728 # se
ond example: use a wild
ard to a
tivate endogenous synapses29 Neurospa
es.SingleCellContainer.query("setparameter spine::/Purk_spine/head/par 25")30 Neurospa
es.SingleCellContainer.query("setparameter thi
kd::gaba::/Purk_GABA 1")3132 # redire
t output to the given file33 Neurospa
es.SingleCellContainer.set_output_filename("/tmp/output")3435 # 
ompile the model36 Neurospa
es.SingleCellContainer.
ompile("/
ell")3738 # define the output variables39 Neurospa
es.SingleCellContainer.output("/
ell/soma", "Vm")4041 # run the simulation42 Neurospa
es.SingleCellContainer.run(simulationtime)4344 # The main program exe
utes a simulation of 0.5 se
onds.45 # The if statement allows this file to used as an exe
utable s
ript and as a library.4647 if __name__ == '__main__':48 run_sumulation(0.5)49 Due to the CBI federated software ar
hite
ture, the G-3 platform provides manyuser interfa
es. As an example, the 
ompartmental solver He

er 
an be driven stand-alone from C 
ode, from Python, or from Perl to run the simplest models, or it 
anbe integrated with theModelContainer for running more realisti
 multi
ompartmentmodels based on morphologi
al data. To illustrate this �exibility we now 
ompare theabove Python s
ript with alternative implementations in C and the G-2 SLI.In the C 
ode there is an abundan
e of low level detail that interfa
es dire
tly tothe solver. For example 
ompartments are identi�ed by their position in an array, andparameters su
h as RM and CM must be provided as an ordered sequen
e of their a
tualvalues (s
aled to the 
ompartment surfa
e area).The 
omplexity of the G-2 SLI interfa
e falls between that of the Python and Perlinterfa
es, and the C 
ode interfa
e. While 
ompartments and parameters have names,numeri
al values are given in a format used by solvers.
10



C Code Implementation GENESIS 2 SLI Implementation#in
lude "he

er/
ompartment.h"stru
t Compartment 
ompSoma ={// type of stru
ture 
reate neutral /
ell{ MATH_TYPE_Compartment, }, 
reate 
ompartment /
ell/somaset�eld /
ell/soma dia 2e-05-1, // no parent 
ompartment set�eld /
ell/soma len 4.47e-054.57537e-11, // Cm set�eld /
ell/soma Cm 4.60608e-11-0.08, // Em set�eld /
ell/soma Em -0.0800-0.068, // InitVm set�eld /
ell/soma Vm_init -0.0681e-9, // Inje
t 360502, // Ra set�eld /
ell/soma Ra 3557113.58441e+08, // Rm set�eld /
ell/soma Rm 3.56051e+08}; set�eld /
ell/soma inje
t 1e-9// 
ompartment and 
hannel mappingint piC2m[℄ = 0, -1, ;// model de�nitionstru
t Intermediary inte r ={ 1, &
ompSoma, NULL, piC2m, };// main simulation s
ript#in
lude "main.
" resetstep 0.5 -timeWhile Python and Perl bindings are suitable for 
onstru
tion of toy models froms
rat
h, it is better to use a domain spe
i�
 language to 
onstru
t the various partsof a model. For example, the ModelContainer is installed with a library of domainspe
i�
 model 
omponents where the standard Hodgkin-Huxley 
hannels are providedin the �le 
hannels/hodgkin-huxley.ndf. These 
hannels 
an be in
luded in the examplegiven above by adding the Python statements:s.import_
hild("
hannels/hodgkin-huxley.ndf::/k")s.import_
hild("
hannels/hodgkin-huxley.ndf::/na")The ModelContainer 
an export models 
onstru
ted in Perl, Python or others
ripting languages as a library for in
orporation into new models or for use with othertools su
h as the Proje
tBrowser. These new models 
an then be imported by a 
allto the Neurospa
es read method. For example, importing a Purkinje 
ell model withover 4000 
ompartments may be done with the following statement:Neurospa
es.SingleCellContainer.read("
ells/purkinje/edsjb1994.ndf")11



After importation the ModelContainer provides a set of fun
tions to analyze thestru
ture of the model morphology. For example, the names of the most distal segmentof ea
h dendrite 
an be obtained with:Neurospa
es.SingleCellContainer.query("segmentertips /Purkinje")3.2 Intera
tive Query and SimulationThe G-Shell is a G-3 software 
omponent that integrates other software 
omponentsand makes their fun
tions available through an intera
tive environment. Coded in Perl,the G-Shell is a 
ommuni
ation abstra
tion layer for other software 
omponents su
has the ModelContainer, He

er, SSP and the Studio. After the G-Shell has beenstarted from a system shell withgenesis-g3the list of loaded software 
omponents is printed to the s
reen after issuing the
ommand:list 
omponentsEa
h loaded software 
omponent will be shown with asso
iated status informationhelping in the diagnosis of possible problems. For example after 
orre
t initialization ofthe ModelContainer its status information should appear as:model-
ontainer:des
ription: internal storage for neuronal modelsintegrator: Neurospa
es::Integrators::Commandsmodule: Neurospa
esstatus: loadedtype:des
ription: intermediarylayer: 2Integration of the G-Shell with theModelContainer allows for real-time analysisof the quantitative and stru
tural aspe
ts of a neuronal morphology. The library ofmodel 
omponents that is installed with the ModelContainer provides a de�nition ofa model Purkinje 
ell in the �le 
ells/purkinje/edsjb1994.ndf. The 
ommand:ndf_load 
ells/purkinje/edsjb1994.ndfwill make the model Purkinje 
ell available for intera
tive analysis. Alternatively, ifthe model is en
oded in a GENESIS 2 SLI s
ript with name PurkM9_model/CURRENT9.gthe 
ommand ndf_load 
an be repla
ed with sli_load:sli_load PurkM9_model/CURRENT9.g 12



This 
ommand imports the model that is spe
i�ed in the SLI s
ript without runningthe simulation. A similar 
ommand (pynn_load) is in development to interfa
e with thePyNN network modeling environment [Davison et al., 2008℄.Given the name of one of its dendriti
 segments, the number of bran
h points betweenthat segment and the soma 
an be determined. After indi
ating whi
h paths of thedendriti
 tree must be examined, the parameter SOMATOPETAL_BRANCHPOINTS 
ontainsthe result, whi
h 
an be obtained with:morphology_summarize /Purkinjeshow_parameter /Purkinje/segments/b1s06[182℄ SOMATOPETAL_BRANCHPOINTSAfter �nding a suitable dendriti
 segment, its synapti
 
hannel 
an be stimulatedwith a pre
omputed spike train that is stored in a �le with, for example, the �lenameevent_data/events.yml:set_runtime_parameter /Purkinje/segments/b1s06[182℄/Purkinje_spine_0/head/par/synapseEVENT_FILENAME ``event_data/events.yml''Finally, following the addition of an output 
omprising the somati
 membrane po-tential, a simulation 
an 
onveniently be started using:add_output /Purkinje/segments/soma Vmrun /Purkinje 0.1This outputs the somati
 response to the stimulus in a �le named by default as/tmp/output.To query the parameters of the stimulated 
ompartment the model 
an then beanalyzed using the graphi
al front-end of the Studio with the 
ommand:exploreFigure 2 shows sample output of running this 
ommand. Other 
apabilities of theStudio in
lude rendering morphologies in three dimensions and generating overviews ofnetwork models (not shown). In the next se
tion we explore more graphi
al 
apabilitiesof G-3.3.3 Gluing Pre-existing Appli
ations & LibrariesIn the past, the graphi
al interfa
e to G-2 was provided by the X-Window SystemOutput and Display Utility for Simulations (XODUS). The XODUS interfa
e madegraphi
al obje
ts available that 
ould be 
onne
ted to model 
omponents from withinthe SLI. Rather than providing a full GUI instan
e, the �exibility of XODUS 
ame fromits infrastru
ture whi
h allowed modelers to easily develop new GUIs dedi
ated to theirresear
h and tea
hing proje
ts 3. However, the XODUS paradigm inevitably allowedmodelers to 
ontaminate their model s
ript with GUI related statements.3The o�
ial G-2 software distribution 
ontains both simple and sophisti
ated example GUIs.13



Figure 2: Using the Studio to query a model and its parameters.As mentioned above, one advantage of the CBI federated software ar
hite
ture isthat it de�nes how to interfa
e simulator 
omponents with external appli
ations. Anobvious example is the use of existing 3D graphi
s software to examine and edit thespatial properties of a model neuron morphology. Others in
lude, integration withexternal graphing and windowing software to plot the values of solved variables againstsimulation time, or to allow the 
onstru
tion of button-ri
h tutorial appli
ations.GUI libraries typi
ally 
ommuni
ate with other software 
omponents using an eventbased system. The fun
tional 
ore of this system is an event dispat
hing loop, usually
alled the main loop. The binding between button 
li
k event and the main loop, and thevisual layout of most 
ontemporary GUI appli
ations is 
onveniently 
onstru
ted usingone of a number of available user interfa
e builders. wxFormBuilder 4 is su
h an interfa
ebuilder whi
h allows a user to 
onstru
t a GUI with visual elements su
h as menus andbuttons, and write a des
ription of the elements and their bindings to a �le known asan XML resour
e (XRC) �le. The GUI de�nitions in this �le 
an then be renderedwith the freely available wxWidgets library and its Python front end wxPython. Furtherintegration with additional G-3 spe
i�
 data bindings ensures that, for example, the dataprodu
ed by a mathemati
al solver �ows to a widget that plots the value of a variableagainst time. This fun
tionality repla
es the G-2 XODUS paradigm, that required SLIs
ripting to 
onne
t GUI 
omponents to model 
omponents and simulation a
tions, witha more 
ontemporary paradigm that separates simulator and model s
ripts from GUI4A user interfa
e designer for the wxPython toolkit and the Linux desktop environment GNOME,available from http://wxformbuilder.org/. 14



related statements.In the following example we 
reate a wxPython appli
ation 
lass 
alled G3App. Thisdemonstrates the Python s
ripting required to 
onne
t the software 
omponents that
reate a small GUI for G-3. We spe
i�
ally show how to initialize the appli
ation (im-plementation of method OnInit), how to run a simple simulation based on the previousexample (method OnRun), and how to plot output (method Plot). For this, it is as-sumed that a XRC �le with the name G3.xr
 
an be found that des
ribes a GUI withone frame (here, mainFrame) whi
h allows the simulation duration to be set via a text
ontrol and 
ontains a button to start the simulation.The �rst lines of 
ode in the s
ript load the ne
essary Python modules whi
h thenload low-level libraries 
oded in a system programming language. The importation ofexample makes the previously de�ned fun
tion run_simulation available. The DataPlot
lass is a spe
ialized 
lass to read in GENESIS data output and load it into a wxPythonplot widget. The import of wx referen
es a system wide install of wxPython and makesthe GUI fun
tions of wxWidgets available to our s
ript.import DataPlot1 import example2 import wx3 from wx import xr
4 To ensure 
orre
t system initialization via the method OnInit, our G3App 
lass isde
lared to inherit the fun
tions of the wx.App 
lass.
lass G3App(wx.App):56 def OnInit(self):7 After 
orre
t system initialization, appli
ation spe
i�
 initialization 
an start. In-side the OnInit method we �rst load the XML resour
e �le previously 
reated usingwxFormBuilder.self.res = xr
.XmlResour
e('G3.xr
')8 The GUI elements are then retrieved from the XRC spe
i�
ation and made availableas Python obje
ts. Ea
h de
lared element 
an be retrieved via its name:self.frame = self.res.LoadFrame(None, 'mainFrame')9 self.durationTextCtrl = xr
.XRCCTRL(self.frame,'durationTextCtrl')10 self.runButton = xr
.XRCCTRL(self.frame, 'runButton')11 After retrieving the run button, we bind it to the method OnRun (given below).This translates the GUI event generated when the run button is 
li
ked to an a
tionthat invokes the OnRun method.self.frame.Bind(wx.EVT_BUTTON, self.OnRun, self.runButton)12 15



The OnRun method reads a numeri
al value for the the simulation time from a text
ontrol widget (durationTextCtrl) and stores it in a variable. This variable is then passedto the fun
tion run_simulation. After the simulation is 
omplete a 
all to a Plot methodis made. This displays the generated data in a wxPython plot widget.def OnRun(self,evt):1314 simulation_time = float(self.durationTextCtrl.GetValue())15 example.run_simulation(simulation_time)16 self.Plot('/tmp/output')17 The Plot method uses the DataPlot 
lass to display G-3 data output with a wxPythonplot widget. The DataPlot widget is part of the libraries of the G-Tube, a Python GUIunder development for G-3.def Plot(self,datafile):1819 plotwindow = wx.Frame(self.frame, -1, "Graph display", (480,300))20 plotpanel = wx.Panel(plotwindow, -1)2122 self.dataplot = DataPlot.DataPlot(plotpanel, -1,23 '/tmp/output',24 'Example Plot',25 'Time (Se
onds)',26 'Membrane Potential (Volts)')2728 vbox_sizer = wx.BoxSizer(wx.VERTICAL)29 vbox_sizer.Add(self.dataplot, 1, wx.EXPAND)30 plotpanel.SetAutoLayout(True)31 plotpanel.SetSizer(vbox_sizer)32 plotpanel.Layout()33 plotwindow.Show()34 The 
ode of the GUI appli
ation (G3App) is terminated with a 
all to the main eventloop of wxPython.if __name__ == '__main__':35 app = G3App(False)36 app.MainLoop()37 In this example we have shown how the CBI ar
hite
ture de�nes a separation be-tween GUI statements and peripheral 
ode su
h as input and output spe
i�
ations, andmodel 
onstru
tion. Besides allowing 
ommon GUI 
onstru
tion kits to be used for thedevelopment of resear
h and edu
ational proje
ts, the approa
h also allows interfa
ingto more spe
ialized GUI kits. This is illustrated with the following example.
16



3.4 Interfa
ing GENESIS with BlenderBlender (http://www.blender.org/) is a free open sour
e 3D 
ontent 
reation suite avail-able for all major operating systems that have Python enabled bindings. The Pythonenvironment of Blender has the restri
tion that the 
ode must be run from inside theBlender spe
i�
 Python interpreter. In doing this, Blender repla
es the fun
tionalityotherwise provided by the G-Shell. It allows the state-of-the-art rendering fun
tions ofBlender to be used to validate and analyze models of the morphology of small dendriti
segments obtained from ele
tron mi
ros
opy data.Over the last several years ele
tron mi
ros
opy (EM) in 
onjun
tion with Re
on-stru
t [Fiala, 2005℄ has been used to obtain pre
ise morphologies of small segments ofPurkinje 
ell dendrites [Huo et al., 2009, Cornelis et al., 2007℄.

Figure 3: Blender image of Purkinje neuron dendriti
 segment.The Re
onstru
t interfa
e 
onverts the Re
onstru
t appli
ation into a G-3 simulator
omponent by making it CBI 
ompliant. This allows Re
onstru
t data to be importedinto the ModelContainer. The 
ore of the interfa
e implements geometri
al trans-formation algorithms that 
onvert EM 
ontours provided by Re
onstru
t to equivalent
ylinders suitable for 
able modeling. The geometri
al properties of the 
ylinders arestored in the native G-3 �le format and algorithms provided by the ModelContainerlink them with the 
able parameters required by the mathemati
al solvers. A simulation
an then be run with the read and run methods given above.The ne
essary 
onversion algorithms are a

essible from the ModelContainer viaPython. The Python interfa
e of Blender links it to the G-3 simulator, su
h that Blenderis the �rst G-3 3D model inspe
tion tool for EM data. As an example, the Python s
riptdeveloped above 
an be run from within the Blender environment. Also, via the samePython interfa
e, simulations 
an be started based on the 3D image data.17



Intera
tive visualization of re
onstru
ted dendriti
 segments is a valuable method ofmodel validation and is available with the interfa
e of G-3 with Blender (see Figure 3).However, the development of small fo
used plugins allows for more than just thesefun
tions. For example, 3D measurement and manipulation of neuron morphology,
omputation of surfa
e areas and volumes, and the generation of 3D 
rosse
tions and2D 
uts also be
omes possible.4 Dis
ussionThe Python and Perl bindings of the G-3 simulator embed similar 
on
epts to the G-2SLI, although their purpose is di�erent. While the SLI had as major goals the integrationof model 
omponents, running simulations, and output 
olle
tion, the primary goal ofs
ripting languages su
h as Perl and Python has be
ome appli
ation integration.Software libraries 
an either provide general support or 
an be tailored for spe
i�
s
ienti�
 dis
iplines. Through the Neurospa
es proje
t, GENESIS now provides a seriesof independent software 
omponents that 
an be 
ombined to support 
omputationalmodeling in the neuros
ien
es. S
ripting languages su
h as Python and Perl then providepowerful integration tools to 
onne
t these software 
omponents to general purposelibraries for GUI appli
ation development, result visualization and data analysis.4.1 From Monolithi
 Software Appli
ations to Modular Frame-worksThe development of the GENESIS simulator was initiated during the eighties through re-sear
h proje
ts that addressed spe
i�
 s
ienti�
 questions in 
omputational neuros
ien
e.Software development was then 
ontinued with a life 
y
le of resear
h proje
t extensions.For example the libraries for kineti
 pathway modeling were added for proje
ts investi-gating how signalling networks store learned behaviour [Bhalla and Iyengar, 1999℄ andhow light regulates release from intra
ellular 
al
ium stores for photore
eption [Bla
kwell, 2000℄.The fast impli
it solver was developed with the spe
i�
 fo
us of 
omplex Purkinje 
ellmodeling [De S
hutter and Bower, 1994a, De S
hutter and Bower, 1994b℄ and more re-
ently synapti
 learning rules have been implemented [Günay et al., 2008℄. In prin
iplesu
h linear or single-threaded development pro
esses 
an 
ontinue forever. However,repetitive extension of the GENESIS simulator with sour
e 
ode of diverse fun
tionsand origin ultimately made the 
ode stru
ture so 
ompli
ated that it be
ame di�
ult,if not impossible, to extend. Be
ause of the density of the G-2 sour
e 
ode the appli-
ation be
ame be
ome 'monolithi
' and user 
ontributions to simulation fun
tionalitywere minimalized.In the paradigm of the CBI federated software ar
hite
ture, model parameters arestored and pro
essed separately from stimulus proto
ols and the way simulations arerun. This greatly fa
ilitates the development and maintenan
e of individual software
omponents for G-3. As examples of the added fun
tionality this approa
h allows, we18



have shown the ability of the ModelContainer to query the stru
ture of a neuronalmorphology, and how to run a simple model using He

er. The CBI federated softwarear
hite
ture also de�nes 
lear boundaries for integration using existing s
ripting te
h-nology. For example, an intera
tive simulation of a Purkinje 
ell model after unitarysynapti
 stimulation 
an be 
onne
ted to a prede�ned spike train stored in a �le. Inthis way software improvements 
an be a
hieved using parallel software developmentpro
esses for stand-alone software 
omponents rather than the more linear ones typi
alof 
entrally developed monolithi
 software appli
ations.4.2 Extensibility in The G-3 Software FederationAn important bene�t of the CBI federated software ar
hite
ture is that third partysoftware libraries be
ome available for users. For example, wxFormBuilder 
an be used togenerate GUI bindings for wxPython and integrate them with the G-3 software platform.To demonstrate the additional power of our approa
h, we have interfa
ed G-3 withRe
onstru
t and Blender. This novel software platform has been used for visual inspe
-tion and validation of re
onstru
ted dendrites by 
onne
ting a model to the geometri
aland analyti
al tools provided by the Blender plugin library. Further, we note that itis also possible to use Blender to instantiate neural simulations and, for example, to
olle
t simulation output data for movie generation. We now give an overview of ourongoing e�orts to interfa
e the G-3 simulator with external libraries and appli
ations.Complementary fun
tionality to that provided by interfa
ing G-3 with Blender wouldbe available after interfa
ing G-3 with neuroConstru
t (http://www.neuro
onstru
t.org/),a software pa
kage designed to simplify the development of 
omplex networks of bio-logi
ally realisti
 neurons [Gleeson, 2005, Gleeson et al., 2007℄. Implemented in Java,neuroConstru
t uses the latest NeuroML spe
i�
ations (see http://www.neuroml.org/,http://www.morphml.org/), 
an be used to visually validate network layout and de-sign [Crook et al., 2007℄, and 
an be 
onne
ted to Python appli
ations (e.g. see http://www.jython.org/).In prin
iple this allows it to be integrated with other simulators that have Python bind-ings, in
luding NEURON, NEST, and G-3.A serial 
ommuni
ation framework for event delivery of a
tion potentials to post-synapti
 targets has been developed. Called the Dis
rete Event System (DES), thissoftware 
omponent is integrated with the mathemati
al solvers of G-3 using eitherPerl or Python. Be
ause it is optimized for 
ommuni
ation over serial hardware, DES
an be extended to support 
ommuni
ation frameworks for parallel hardware su
h asthose provided by the MOOSE simulator [Ray and Bhalla, 2008℄ and the MUSIC frame-work [Djurfeldt et al., 2010℄.The NeuroMorpho.Org database of neuronal morphologies (http://www.neuromorpho.org/)is a 
entrally 
urated inventory of digitally re
onstru
ted neurons [As
oli, 2006℄. Thedigital re
onstru
tion of neuronal arborization is an important step in the quantitativeinvestigation of 
ellular neuroanatomy. Allowing extensive morphometri
 analysis, it isthe �rst step in the implementation of biophysi
al models of ele
trophysiology. Dire
tinterfa
ing with the fun
tionality of theModelContainer a

elerates the development19



of neuronal models by providing a dire
t link to data from experiments. Preliminaryimplementations of this fun
tionality are now part of an automated test framework forG-3.G-3 also signi�
antly extends the ability of GENESIS to dire
tly intera
t with exper-imental te
hnologies su
h as open sour
e dynami
 
lamp software. As an example, themodular approa
h taken by the RTXI platform for dynami
 
lamp [Betten
ourt et al., 2008,Dorval et al., 2001℄ and the modular stru
ture of G-3 mean that the solver, He

er, 
anbe dire
tly integrated as an RTXI plug-in [Cornelis and Coop, 2010℄. This greatly sim-pli�es the required software development.Ultimately, the extensibility of the CBI federated software ar
hite
ture provides anextremely plasti
 environment within whi
h independent 
omponents 
an be integratedwith a s
ripting language of 
hoi
e.4.3 Impli
ations for Neuronal Simulator InteroperabilityThe 
urrent generation of neural simulators 
an be 
hara
terized as software appli
ationsthat support a user work�ow extending from model 
onstru
tion to data analysis. Manyof these simulators support Python bindings be
ause of their ease of use [Pe
evski et al., 2009℄and simpli
ity [Goodman and Brette, 2008℄. They range from Monte-Carlo simulatorsfor rea
tion-di�usion systems [Wils and S
hutter, 2009℄ and dedi
ated large network sim-ulators [Eppler et al., 2008℄ to the general purpose NEURON and GENESIS 2 simula-tors [Hines et al., 2009, Bower and Beeman, 1998℄.For these simulators interoperability is more easily implemented using one of theemerging standards for model ex
hange su
h as NeuroML [Goddard et al., 2001℄, NineML [Gorte
hnikov and the INCF NineML Task For
e, 2010℄and PyNN [Davison et al., 2008℄. While dedi
ated G-3 modules supporting the use ofthese interoperability standards are 
urrently under development, the G-3 platform nowalso provides an alternative approa
h that uses s
ripting to 
onne
t neuros
ien
e spe-
i�
 software to general purpose software and integrate it into a next generation neuralsimulator.4.4 Federated Software Development in Neuros
ien
ePro
esses of software development have traditionally been des
ribed as either 
athedral-style where there is a 
losed developer group under 
entral dire
tion and software re-leases are infrequent, or, alternatively, bazaar-style where the software is developed byvolunteers and software releases o

ur early and often [Raymond, 2001, Brooks, 1995℄.While 
athederal-style software development leads to a single-threaded development 
y-
le 
ommonly used by 
ommer
ial appli
ations, the bazaar-style leads to multi-threadeddevelopment 
y
les of appli
ations that 
ome in di�erent �avours 5.Here, based on the CBI paradigm, we have outlined a solution for multi-threadeddevelopment of software 
omponents for neuros
ien
e (for other examples of this ap-5A typi
al example is the family of editors based on Ema
s.20



proa
h to neural simulation see [King et al., 2009, Nordlie and Plesser, 2009℄). We havegiven examples that use Python and Perl.Employed in this way, the modularized design of the G-3 simulator gives rise to ane
ology of software 
omponents that 
an be glued together in a variety of ways providingfor progressive federated software development.A
knowledgementsWe a
knowledge Ja-Lyoung Joe of the College of Medi
ine, Wonkwang University, Re-publi
 of Korea, both for fruitful dis
ussion and for his parallel work on a new Pythonimplementation of GENESIS available from http://sour
eforge.net/. We also thank theComputational Biology Initiative at UTSA (http://www.
bi.utsa.edu) for their ex
ellentsupport when installing and updating G-3 on their 
omputers.Hugo Cornelis is partially supported by the CREA Finan
ing program (CREA/07/027)of the K.U.Leuven, Belgium, EU. Both Hugo Cornelis and Allan D. Coop are partiallysupported by NIH grant 3 R01 NS049288-06S1 to James M Bower.

21



Referen
es[08:, 2008℄ (2008). Simpli�ed wrapper interfa
e generator. World Wide Web.[As
oli, 2006℄ As
oli, G. (2006). Mobilizing the base of neuros
ien
e data: the 
ase ofneuronal morphologies. Nature Rev. Neuros
i., 7:318�324.[Betten
ourt et al., 2008℄ Betten
ourt, J., Lillis, K., Stupin, L., and White, J. (2008).E�e
ts of imperfe
t dynami
 
lamp: Computational and experimental results. Journalof Neuros
ien
e Methods, 169(2):282�289.[Bhalla et al., 1992℄ Bhalla, U., Bilit
h, D., and Bower, J. (1992). Rallpa
ks: A set ofben
hmarks for neuronal simulators. TRENDS in Neuros
ien
es, 15(11):453�458.[Bhalla and Iyengar, 1999℄ Bhalla, U. and Iyengar, R. (1999). Emergent properties ofnetworks of biologi
al signaling pathways. S
ien
e, 283:381�387.[Bla
kwell, 2000℄ Bla
kwell, K. (2000). Eviden
e for a distin
t light-indu
ed 
al
ium-dependent potassium 
urrent in hermissenda 
rassi
ornis. Journal of ComputationalNeuros
ien
e, 9(2):149�170.[Bower and Beeman, 1998℄ Bower, J. M. and Beeman, D., editors (1998). The Book ofGENESIS: Exploring Realisti
 Neural Models with the GEneral NEural SImulationSystem. Springer-Verlag, New York, se
ond edition.[Brooks, 1995℄ Brooks, F. P. (1995). The Mythi
al Man-Month: Essays on SoftwareEngineering, Anniversary Edition (2nd Edition). Addison-Wesley Professional, 2 edi-tion.[Cornelis and Coop, 2010℄ Cornelis, H. and Coop, A. D. (2010). Realtime tuning andveri�
ation of 
ompartmental 
ell models using RTXI and GENESIS. In TwentiethAnnual Computational Neuros
ien
e Meeting CNS*2010 July 2010. Submitted.[Cornelis and De S
hutter, 2003℄ Cornelis, H. and De S
hutter, E. (2003). Neurospa
es :Separating modeling and simulation. Neuro
omputing, 52�54:227�231.[Cornelis and De S
hutter, 2004℄ Cornelis, H. and De S
hutter, E. (2004). Neurospa
esparameter handling. Neuro
omputing, 58�60:1079�1084.[Cornelis et al., 2008℄ Cornelis, H., Edwards, M., Coop, A., and Bower, J. (2008). TheCBI ar
hite
ture for 
omputational simulation of realisti
 neurons and 
ir
uits in theGENESIS 3 software federation. BMC Neuros
ien
e, 9(S1):P88.[Cornelis et al., 2007℄ Cornelis, H., Lu, H., Esquivel, A., and Bower, J. (2007). Model-ing a single dendriti
 
ompartment using Neurospa
es and GENESIS-3. BMC Neu-ros
ien
e, 8(S2):P3. i



[Crook et al., 2007℄ Crook, S., Gleeson, P., Howell, F., Svitak, J., and Silver, A. (2007).MorphML: Level 1 of the NeuroML standards for neuronal morphology data andmodel spe
i�
ation. Neuroinformati
s, 5(2):96�104.[Davison et al., 2008℄ Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller,E., Pe
evski, D., Perrinet, L., and Yger, P. (2008). PyNN: a 
ommon interfa
e forneuronal network simulators. Frontiers in Neuroinformati
s, 2.[De S
hutter and Bower, 1994a℄ De S
hutter, E. and Bower, J. (1994a). An a
tive mem-brane model of the 
erebellar purkinje 
ell I. simulation of 
urrent 
lamps in sli
e.Journal of Neurophysiology, 71:375�400.[De S
hutter and Bower, 1994b℄ De S
hutter, E. and Bower, J. M. (1994b). An a
tivemembrane model of the 
erebellar purkinje 
ell II. simulation of synapti
 responses.Journal of Neurophysiology, 71:401�419.[Djurfeldt et al., 2010℄ Djurfeldt, M., Hjorth, J., Eppler, J. M., Dudani, N., Helias, M.,Potjans, T. C., Bhalla, U. S., Diesmann, M., Kotaleski, J. H., and Ekeberg, O. (2010).Run-time interoperability between neuronal network simulators based on the musi
framework. Neuroinformati
s, 8(1):43�60.[Dorval et al., 2001℄ Dorval, A., Christini, D., and White, T. (2001). Real-time linuxdynami
 
lamp: A fast and �exible way to 
onstru
t virtual ion 
hannels in living
ells. Annals of Biomededi
al Engineering, 29:897�907.[Eppler et al., 2008℄ Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig,M.-O. (2008). PyNEST: A 
onvenient interfa
e to the nest simulator. Frontiers inneuroinformati
s, 2(12). DOI: 10.3389/neuro.11.012.2008.[Fiala, 2005℄ Fiala, J. (2005). Re
onstru
t: a free editor for serial se
tion mi
ros
opy.Journal of Mi
ros
opy, 218:52�61. http://www.bu.edu/neural/Re
onstru
t.html.[Gleeson, 2005℄ Gleeson, P. (2005). Building 3D network models with neuroCon-stru
t. World Wide Web. Tutorial at the Wam-Bam meeting, http://wam-bamm.org/WB05/Tutorials/advan
ed-tutorials/gleeson/index.html.[Gleeson et al., 2007℄ Gleeson, P., Steuber, V., and Silver, R. A. (2007). neuro
onstru
t:A tool for modeling networks of neurons in 3d spa
e. Neuron, 54:219�235.[Goddard and Hood, 1998℄ Goddard, N. and Hood, G. (1998). Large-s
ale simulationusing parallel genesis. In Bower, J. and Beeman, D., editors, The Book of GENESIS,
hapter 21. Springer-Verlag, 2nd edition.[Goddard et al., 2001℄ Goddard, N. H., Hu
ka, M., Howell, F., Cornelis, H., Shankar,K., and Beeman, D. (2001). Towards NeuroML: Model des
ription methods for 
ol-laborative modelling in neuros
ien
e. Philosophi
al Transa
tions of the Royal So
iety,Series B: Biologi
al S
ien
es, 356:1�20. Theme Issue organized and edited by Rolfii



Kötter on "Neuros
ien
e databases - tools for exploring brain stru
ture-fun
tion re-lationships".[Goodman and Brette, 2008℄ Goodman, D. and Brette, R. (2008). Brian: a simulatorfor spiking neural networks in python. Frontiers in neuroinformati
s, 2(5). DOI:10.3389/neuro.11.005.2008.[Gorte
hnikov and the INCF NineML Task For
e, 2010℄ Gorte
hnikov, A. and theINCF NineML Task For
e (2010). The NineML user layer. In Twentieth AnnualComputational Neuros
ien
e Meeting CNS*2010 July 2010., San Antonio, USA.[Günay et al., 2008℄ Günay, C., Edgerton, J. R., , and Jaeger, D. (2008). Channeldensity distributions explain spiking variability in the globus pallidus: A 
ombinedphysiology and 
omputer simulation database approa
h. J. Neuros
i., 28:7476�7491.[Hines et al., 2009℄ Hines, M. L., Davison, A. P., and Muller, E. (2009). NEURON andpython. Frontiers in neuroinformati
s, 3(1). DOI: 10.3389/neuro.11.001.2009.[Huo et al., 2009℄ Huo, L., Esquivel, A. V., and Bower, J. M. (2009). 3D ele
tron mi-
ros
opi
 re
onstru
tion of segments of rat 
erebellar purkinje 
ell dendrites re
eivingas
ending and parallel �ber granule 
ell synapti
 inputs. The Journal of ComparativeNeurology, 514(6):583�94.[King et al., 2009℄ King, J. G., Hines, M., Hill, S. L., Goodman, P. H., Markram, H.,and S
hürmann, F. (2009). A 
omponent-based extension framework for large-s
aleparallel simulations in NEURON. Frontiers in Neuroinformati
s.[Langtangen, 2004℄ Langtangen, H. P. (2004). Python S
ripting for Computational S
i-en
e. Springer-Verlag.[Lee and Ware, 2007℄ Lee, J. and Ware, B. (2007). Open Sour
e Development withLAMP: Using Linux, Apa
he, MySQL, Perl, and PHP. Addison-Wesley.[Martelli, 2006℄ Martelli, A. (2006). Python in a Nutshell. O'Reilly Media, In
.[Nordlie and Plesser, 2009℄ Nordlie, E. and Plesser, H. E. (2009). Visualizing neuronalnetwork 
onne
tivity with 
onne
tivity pattern tables. Frontiers in Neuroinformati
s.[O'Hara and Gomberg, 1988℄ O'Hara, R. and Gomberg, D. (1988). Modern Program-ming Using REXX. Prenti
e Hall. ISBN 0-13-597329-5.[Ousterhout, 1994℄ Ousterhout, J. K. (1994). T
l and the Tk Toolkit. Addison-Wesley.ISBN 0-201-63337-X.[Ousterhout, 1998℄ Ousterhout, J. K. (1998). S
ripting: Higher level programming forthe 21st 
entury. IEEE Computer, 31:23�30.iii



[Pe
evski et al., 2009℄ Pe
evski, D., Nats
hläger, T., and S
hu
h, K. (2009). PCSIM: Aparallel simulation environment for neural 
ir
uits fully integrated with python. DOI:10.3389/neuro.11.011.2009.[Ray and Bhalla, 2008℄ Ray, S. and Bhalla, U. S. (2008). PyMOOSE: interoperables
ripting in python for MOOSE. Frontiers in Neuroinformati
s.[Raymond, 2001℄ Raymond, E. S. (2001). The Cathedral and the Bazaar. O'ReillyMedia.[Thiruvathukal et al., 2001℄ Thiruvathukal, G. K., Christopher, T. W., and Shafaee,J. P. (2001). Web Programming in Python: Te
hniques for Integrating Linux, Apa
heand MySQL. Prenti
e Hall. ISBN: 0130410659.[Tiobe Software, 2010℄ Tiobe Software (2010). Tiobe pro-gramming 
ommunity index. World Wide Web.http://www.tiobe.
om/index.php/
ontent/paperinfo/tp
i/index.html.[Valiente, 2009℄ Valiente, G. (2009). Combinatorial Pattern Mat
hing Algorithms inComputational Biology Using Perl and R. Addison-Wesley.[Vanier, 1997℄ Vanier, M. C. (1997). A version of the neural simulator GEN-ESIS that uses python. World Wide Web. http://www.
s.
alte
h.edu/∼mvanier/ha
king/pygenesis/pygenesis.tar.gz.[Wall, 1999℄ Wall, L. (1999). Perl Programmers Referen
e Guide. Get a more re
entreferen
e.[Wils and S
hutter, 2009℄ Wils, S. and S
hutter, E. D. (2009). STEPS: Modeling andsimulating 
omplex rea
tion-di�usion systems with python. Frontiers in Neuroinfor-mati
s, 3(15). DOI: 10.3389/neuro.11.015.2009.

iv


